Do you want to publish a course? Click here

Probing the magnetoelectric effect in noncentrosymmetric superconductors by equal-spin Andreev tunneling

226   0   0.0 ( 0 )
 Added by Gregor Tkachov
 Publication date 2018
  fields Physics
and research's language is English
 Authors G. Tkachov




Ask ChatGPT about the research

In noncentrosymmetric superconductors (NCSs), the conversion of a charge current into spin magnetization - the so called magnetoelectric effect - is the direct indicator of the unconventional, mixed-parity order parameter. This paper proposes a scheme to detect the magnetoelectric effect by anomalous, equal-spin Andreev tunneling in NCS/ferromagnet contacts. The proposal relies on the ability to generate spin-polarized triplet pairing by passing an electric current through an NCS. Such an induced triplet pairing bears a similarity to the paradigmatic nonunitary pairing in triplet superfluids with a complex vector order parameter ${bf d}$. The qualitative difference is that the induced nonunitary state can be realised in NCSs with a purely real ${bf d}$ by breaking the time-reversal symmetry in current-biased setups. This offers a possibility to access the unconventional superconductivity in NCSs through electrical transport measurements.



rate research

Read More

214 - G. Tkachov 2016
Non-centrosymmetric superconductors exhibit the magnetoelectric effect which manifests itself in the appearance of the magnetic spin polarization in response to a dissipationless electric current (supercurrent). While much attention has been dedicated to the thermodynamic version of this phenomenon (Edelstein effect), non-equilibrium transport magnetoelectric effects have not been explored yet. We propose the magnetoelectric Andreev effect (MAE) which consists in the generation of spin-polarized triplet Andreev conductance by an electric supercurrent. The MAE stems from the spin polarization of the Cooper-pair condensate due to a supercurrent-induced non-unitary triplet pairing. We propose the realization of such non-unitary pairing and MAE in superconducting proximity structures based on two-dimensional helical metals -- strongly spin-orbit-coupled electronic systems with the Dirac spectrum such as the topological surface states. Our results uncover an unexplored route towards electrically controlled superconducting spintronics and are a smoking gun for induced unconventional superconductivity in spin-orbit-coupled materials.
We study the surface Andreev bound states (SABSs) and quasiparticle tunneling spectroscopy of three-dimensional (3D) chiral superconductor by changing the surface (interface) misorientation angle of chiral superconductors. We obtain analytical formula of the energy dispersion of SABS for general pair potential when an original 4$times$4 BdG Hamiltonian can be reduced to be two 2$times$2 blocks. The resulting SABS for 3D chiral superconductors with pair potential given by $k_z(k_x + ik_y)^{ u}$ $({ u} = 1, 2)$ has a complicated energy dispersion due to the coexistence of both point and line nodes. We focus on the tunneling spectroscopy of this pairing in the presence of applied magnetic field which induces Doppler shift of quasiparticle spectra. By contrast to previous known Doppler effect in unconventional superconductors, zero bias conductance dip can change into zero bias conductance peak by external magnetic field. We also study SABSs and tunneling spectroscopy for possible pairing symmetries of UPt$_3$ . For this purpose, we extend a standard formula of tunneling conductance of unconventional superconductor junctions in order to treat spin-triplet non-unitary pairings. The magneto tunneling spectroscopy, i.e., tunneling spectroscopy in the presence of magnetic field, can serve as a guide to determine the pairing symmetry of this material.
We propose a three-terminal structure to probe robust signatures of Majorana zero modes consisting of a quantum dot coupled to the normal metal, s-wave superconducting and Majorana Y-junction leads. The zero-bias differential conductance at zero temperature of the normal-metal lead peaks at $2e^{2}/h$, which will be deflected after Majorana braiding. We find that the effect of thermal broadening is significantly suppressed when the dot is on resonance. In the case that the energy level of the quantum dot is much larger than the superconducting gap, tunneling processes are dominated by Majorana-induced crossed Andreev reflection. Particularly, a novel kind of crossed Andreev reflection equivalent to the splitting of charge quanta $3e$ occurs after Majorana braiding.
We provide a direct proof of two-electron Andreev transitions in a superconductor - normal metal tunnel junction by detecting them in a real-time electron counting experiment. Our results are consistent with ballistic Andreev transport with an order of magnitude higher rate than expected for a uniform barrier, suggesting that only part of the interface is effectively contributing to the transport. These findings are quantitatively supported by our direct current measurements in single-electron transistors with similar tunnel barriers.
We have performed microwave spectroscopy of Andreev states in superconducting weak links tailored in an InAs-Al (core-full shell) epitaxially-grown nanowire. The spectra present distinctive features, with bundles of four lines crossing when the superconducting phase difference across the weak link is 0 or $pi.$ We interpret these as arising from zero-field spin-split Andreev states. A simple analytical model, which takes into account the Rashba spin-orbit interaction in a nanowire containing several transverse subbands, explains these features and their evolution with magnetic field. Our results show that the spin degree of freedom is addressable in Josephson junctions, and constitute a first step towards its manipulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا