No Arabic abstract
A recommender system generates personalized recommendations for a user by computing the preference score of items, sorting the items according to the score, and filtering top-K items with high scores. While sorting and ranking items are integral for this recommendation procedure, it is nontrivial to incorporate them in the process of end-to-end model training since sorting is nondifferentiable and hard to optimize with gradient descent. This incurs the inconsistency issue between existing learning objectives and ranking metrics of recommenders. In this work, we present DRM (differentiable ranking metric) that mitigates the inconsistency and improves recommendation performance by employing the differentiable relaxation of ranking metrics. Via experiments with several real-world datasets, we demonstrate that the joint learning of the DRM objective upon existing factor based recommenders significantly improves the quality of recommendations, in comparison with other state-of-the-art recommendation methods.
Sorting and ranking supervision is a method for training neural networks end-to-end based on ordering constraints. That is, the ground truth order of sets of samples is known, while their absolute values remain unsupervised. For that, we propose differentiable sorting networks by relaxing their pairwise conditional swap operations. To address the problems of vanishing gradients and extensive blurring that arise with larger numbers of layers, we propose mapping activations to regions with moderate gradients. We consider odd-even as well as bitonic sorting networks, which outperform existing relaxations of the sorting operation. We show that bitonic sorting networks can achieve stable training on large input sets of up to 1024 elements.
Users of industrial recommender systems are normally suggesteda list of items at one time. Ideally, such list-wise recommendationshould provide diverse and relevant options to the users. However, in practice, list-wise recommendation is implemented as top-N recommendation. Top-N recommendation selects the first N items from candidates to display. The list is generated by a ranking function, which is learned from labeled data to optimize accuracy.However, top-N recommendation may lead to suboptimal, as it focuses on accuracy of each individual item independently and overlooks mutual influence between items. Therefore, we propose a personalized re-ranking model for improving diversity of the recommendation list in real recommender systems. The proposed re-ranking model can be easily deployed as a follow-up component after any existing ranking function. The re-ranking model improves the diversity by employing personalized Determinental Point Process (DPP). DPP has been applied in some recommender systems to improve the diversity and increase the user engagement.However, DPP does not take into account the fact that users may have individual propensities to the diversity. To overcome such limitation, our re-ranking model proposes a personalized DPP to model the trade-off between accuracy and diversity for each individual user. We implement and deploy the personalized DPP model on alarge scale industrial recommender system. Experimental results on both offline and online demonstrate the efficiency of our proposed re-ranking model.
Modern recommender systems (RS) work by processing a number of signals that can be inferred from large sets of user-item interaction data. The main signal to analyze stems from the raw matrix that represents interactions. However, we can increase the performance of RS by considering other kinds of signals like the context of interactions, which could be, for example, the time or date of the interaction, the user location, or sequential data corresponding to the historical interactions of the user with the system. These complex, context-based interaction signals are characterized by a rich relational structure that can be represented by a multi-partite graph. Graph Convolutional Networks (GCNs) have been used successfully in collaborative filtering with simple user-item interaction data. In this work, we generalize the use of GCNs for N-partite graphs by considering N multiple context dimensions and propose a simple way for their seamless integration in modern deep learning RS architectures. More specifically, we define a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions, and constructs node embeddings by leveraging their relational structure. Experiments on several datasets from recommender systems to drug re-purposing show the benefits of the introduced GCN embedding layer by measuring the performance of different context-enriched tasks.
Graph-based recommendation models work well for top-N recommender systems due to their capability to capture the potential relationships between entities. However, most of the existing methods only construct a single global item graph shared by all the users and regrettably ignore the diverse tastes between different user groups. Inspired by the success of local models for recommendation, this paper provides the first attempt to investigate multiple local item graphs along with a global item graph for graph-based recommendation models. We argue that recommendation on global and local graphs outperforms that on a single global graph or multiple local graphs. Specifically, we propose a novel graph-based recommendation model named GLIMG (Global and Local IteM Graphs), which simultaneously captures both the global and local user tastes. By integrating the global and local graphs into an adapted semi-supervised learning model, users preferences on items are propagated globally and locally. Extensive experimental results on real-world datasets show that our proposed method consistently outperforms the state-of-the art counterparts on the top-N recommendation task.
Recent years have witnessed the fast development of the emerging topic of Graph Learning based Recommender Systems (GLRS). GLRS employ advanced graph learning approaches to model users preferences and intentions as well as items characteristics for recommendations. Differently from other RS approaches, including content-based filtering and collaborative filtering, GLRS are built on graphs where the important objects, e.g., users, items, and attributes, are either explicitly or implicitly connected. With the rapid development of graph learning techniques, exploring and exploiting homogeneous or heterogeneous relations in graphs are a promising direction for building more effective RS. In this paper, we provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations. First, we characterize and formalize GLRS, and then summarize and categorize the key challenges and main progress in this novel research area. Finally, we share some new research directions in this vibrant area.