No Arabic abstract
Recent years have witnessed the fast development of the emerging topic of Graph Learning based Recommender Systems (GLRS). GLRS employ advanced graph learning approaches to model users preferences and intentions as well as items characteristics for recommendations. Differently from other RS approaches, including content-based filtering and collaborative filtering, GLRS are built on graphs where the important objects, e.g., users, items, and attributes, are either explicitly or implicitly connected. With the rapid development of graph learning techniques, exploring and exploiting homogeneous or heterogeneous relations in graphs are a promising direction for building more effective RS. In this paper, we provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations. First, we characterize and formalize GLRS, and then summarize and categorize the key challenges and main progress in this novel research area. Finally, we share some new research directions in this vibrant area.
Recent advances in research have demonstrated the effectiveness of knowledge graphs (KG) in providing valuable external knowledge to improve recommendation systems (RS). A knowledge graph is capable of encoding high-order relations that connect two objects with one or multiple related attributes. With the help of the emerging Graph Neural Networks (GNN), it is possible to extract both object characteristics and relations from KG, which is an essential factor for successful recommendations. In this paper, we provide a comprehensive survey of the GNN-based knowledge-aware deep recommender systems. Specifically, we discuss the state-of-the-art frameworks with a focus on their core component, i.e., the graph embedding module, and how they address practical recommendation issues such as scalability, cold-start and so on. We further summarize the commonly-used benchmark datasets, evaluation metrics as well as open-source codes. Finally, we conclude the survey and propose potential research directions in this rapidly growing field.
In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.
Modern recommender systems (RS) work by processing a number of signals that can be inferred from large sets of user-item interaction data. The main signal to analyze stems from the raw matrix that represents interactions. However, we can increase the performance of RS by considering other kinds of signals like the context of interactions, which could be, for example, the time or date of the interaction, the user location, or sequential data corresponding to the historical interactions of the user with the system. These complex, context-based interaction signals are characterized by a rich relational structure that can be represented by a multi-partite graph. Graph Convolutional Networks (GCNs) have been used successfully in collaborative filtering with simple user-item interaction data. In this work, we generalize the use of GCNs for N-partite graphs by considering N multiple context dimensions and propose a simple way for their seamless integration in modern deep learning RS architectures. More specifically, we define a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions, and constructs node embeddings by leveraging their relational structure. Experiments on several datasets from recommender systems to drug re-purposing show the benefits of the introduced GCN embedding layer by measuring the performance of different context-enriched tasks.
Fairness is a critical system-level objective in recommender systems that has been the subject of extensive recent research. A specific form of fairness is supplier exposure fairness where the objective is to ensure equitable coverage of items across all suppliers in recommendations provided to users. This is especially important in multistakeholder recommendation scenarios where it may be important to optimize utilities not just for the end-user, but also for other stakeholders such as item sellers or producers who desire a fair representation of their items. This type of supplier fairness is sometimes accomplished by attempting to increasing aggregate diversity in order to mitigate popularity bias and to improve the coverage of long-tail items in recommendations. In this paper, we introduce FairMatch, a general graph-based algorithm that works as a post processing approach after recommendation generation to improve exposure fairness for items and suppliers. The algorithm iteratively adds high quality items that have low visibility or items from suppliers with low exposure to the users final recommendation lists. A comprehensive set of experiments on two datasets and comparison with state-of-the-art baselines show that FairMatch, while significantly improves exposure fairness and aggregate diversity, maintains an acceptable level of relevance of the recommendations.
Recent studies have shown that providing personalized explanations alongside recommendations increases trust and perceived quality. Furthermore, it gives users an opportunity to refine the recommendations by critiquing parts of the explanations. On one hand, current recommender systems model the recommendation, explanation, and critiquing objectives jointly, but this creates an inherent trade-off between their respective performance. On the other hand, although recent latent linear critiquing approaches are built upon an existing recommender system, they suffer from computational inefficiency at inference due to the objective optimized at each conversations turn. We address these deficiencies with M&Ms-VAE, a novel variational autoencoder for recommendation and explanation that is based on multimodal modeling assumptions. We train the model under a weak supervision scheme to simulate both fully and partially observed variables. Then, we leverage the generalization ability of a trained M&Ms-VAE model to embed the user preference and the critique separately. Our works most important innovation is our critiquing module, which is built upon and trained in a self-supervised manner with a simple ranking objective. Experiments on four real-world datasets demonstrate that among state-of-the-art models, our system is the first to dominate or match the performance in terms of recommendation, explanation, and multi-step critiquing. Moreover, M&Ms-VAE processes the critiques up to 25.6x faster than the best baselines. Finally, we show that our model infers coherent joint and cross generation, even under weak supervision, thanks to our multimodal-based modeling and training scheme.