Do you want to publish a course? Click here

Maximizing the algebraic connectivity in multilayer networks with arbitrary interconnections

104   0   0.0 ( 0 )
 Added by Heman Shakeri
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The second smallest eigenvalue of the Laplacian matrix is determinative in characterizing many network properties and is known as algebraic connectivity. In this paper, we investigate the problem of maximizing algebraic connectivity in multilayer networks by allocating interlink weights subject to a budget while allowing arbitrary interconnections. For budgets below a threshold, we identify an upper-bound for maximum algebraic connectivity which is independent of interconnections pattern and is reachable with satisfying a certain regularity condition. For efficient numerical approaches in regions of no analytical solution, we cast the problem into a convex framework that explores the problem from several perspectives and, particularly, transforms into a graph embedding problem that is easier to interpret and related to the optimum diffusion phase. Allowing arbitrary interconnections entails regions of multiple transitions, giving more diverse diffusion phases with respect to one-to-one interconnection case. When there is no limitation on the interconnections pattern, we derive several analytical results characterizing the optimal weights by individual Fiedler vectors. We use the ratio of algebraic connectivity and the layer sizes to explain the results. Finally, we study the placement of a limited number of interlinks by greedy heuristics, using the Fiedler vector components of each layer.



rate research

Read More

Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with inter-layer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these inter-layer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one inter-layer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be non-uniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.
Multilayer networks allow for modeling complex relationships, where individuals are embedded in multiple social networks at the same time. Given the ubiquity of such relationships, these networks have been increasingly gaining attention in the literature. This paper presents the first analysis of the robustness of centrality measures against strategic manipulation in multilayer networks. More specifically, we consider an evader who strategically chooses which connections to form in a multilayer network in order to obtain a low centrality-based ranking-thereby reducing the chance of being highlighted as a key figure in the network-while ensuring that she remains connected to a certain group of people. We prove that determining an optimal way to hide is NP-complete and hard to approximate for most centrality measures considered in our study. Moreover, we empirically evaluate a number of heuristics that the evader can use. Our results suggest that the centrality measures that are functions of the entire network topology are more robust to such a strategic evader than their counterparts which consider each layer separately.
The operation of adding edges has been frequently used to the study of opinion dynamics in social networks for various purposes. In this paper, we consider the edge addition problem for the DeGroot model of opinion dynamics in a social network with $n$ nodes and $m$ edges, in the presence of a small number $s ll n$ of competing leaders with binary opposing opinions 0 or 1. Concretely, we pose and investigate the problem of maximizing the equilibrium overall opinion by creating $k$ new edges in a candidate edge set, where each edge is incident to a 1-valued leader and a follower node. We show that the objective function is monotone and submodular. We then propose a simple greedy algorithm with an approximation factor $(1-frac{1}{e})$ that approximately solves the problem in $O(n^3)$ time. Moreover, we provide a fast algorithm with a $(1-frac{1}{e}-epsilon)$ approximation ratio and $tilde{O}(mkepsilon^{-2})$ time complexity for any $epsilon>0$, where $tilde{O}(cdot)$ notation suppresses the ${rm poly} (log n)$ factors. Extensive experiments demonstrate that our second approximate algorithm is efficient and effective, which scales to large networks with more than a million nodes.
102 - Chen Feng , Luoyi Fu , Bo Jiang 2020
Influence maximization (IM) aims at maximizing the spread of influence by offering discounts to influential users (called seeding). In many applications, due to users privacy concern, overwhelming network scale etc., it is hard to target any user in the network as one wishes. Instead, only a small subset of users is initially accessible. Such access limitation would significantly impair the influence spread, since IM often relies on seeding high degree users, which are particularly rare in such a small subset due to the power-law structure of social networks. In this paper, we attempt to solve the limited IM in real-world scenarios by the adaptive approach with seeding and diffusion uncertainty considered. Specifically, we consider fine-grained discounts and assume users accept the discount probabilistically. The diffusion process is depicted by the independent cascade model. To overcome the access limitation, we prove the set-wise friendship paradox (FP) phenomenon that neighbors have higher degree in expectation, and propose a two-stage seeding model with the FP embedded, where neighbors are seeded. On this basis, for comparison we formulate the non-adaptive case and adaptive case, both proven to be NP-hard. In the non-adaptive case, discounts are allocated to users all at once. We show the monotonicity of influence spread w.r.t. discount allocation and design a two-stage coordinate descent framework to decide the discount allocation. In the adaptive case, users are sequentially seeded based on observations of existing seeding and diffusion results. We prove the adaptive submodularity and submodularity of the influence spread function in two stages. Then, a series of adaptive greedy algorithms are proposed with constant approximation ratio.
We study the problem of maximizing a monotone $k$-submodular function $f$ under a knapsack constraint, where a $k$-submodular function is a natural generalization of a submodular function to $k$ dimensions. We present a deterministic $(frac12-frac{1}{2e})$-approximation algorithm that evaluates $f$ $O(n^5k^4)$ times.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا