No Arabic abstract
Impact of a droplet on an undercooled surface is a complex phenomenon as it simultaneously instigates several physical processes that cover a broad spectrum of transport phenomena and phase-transition. Here, we report and explain an unexpected but highly relevant phenomenon of fingered growth of the solid-phase. It emerges during the impact of a binary droplet that freezes from the outside prior to the impact on the undercooled surface. We establish that the presence of pre-solidified material at the advancing contact line fundamentally changes the resulting dynamics, namely by modifying the local flow mobility that leads to an instability analogous to viscous fingering. Moreover, we delineate the interplay between the interfacial deformations of the impacting droplet and patterned growth of the solid-phase as disconnected patterns emerge at faster impacts.
In many macroscopic dynamic wetting problems, it is assumed that the macroscopic interface is quasistatic, and the dissipation appears only in the region close to the contact line. When approaching the moving contact line, a microscopic mechanism is required to regularize the singularity of viscous dissipation. On the other hand, if the characteristic size of a fluidic system is reduced to a range comparable to the microscopic regularization length scale, the assumption that viscous effects are localized near the contact line is no longer justified. In the present work, such microscopic length is the slip length. We investigate the dewetting of a droplet using the boundary element method. Specifically, we solve for the axisymmetric Stokes flow with i) the Navier-slip boundary condition at the solid/liquid boundary, and ii) a time-independent microscopic contact angle at the contact line. The profile evolution is computed for different slip lengths and equilibrium contact angles. When decreasing the slip length, the typical nonsphericity first increases, reaches a maximum at a characteristic slip length $tilde{b}_m$, and then decreases. Regarding different equilibrium contact angles, two universal rescalings are proposed to describe the behavior for slip lengths larger or smaller than $tilde{b}_m$. Around $tilde{b}_m$, the early time evolution of the profiles at the rim can be described by similarity solutions. The results are explained in terms of the structure of the flow field governed by different dissipation channels: viscous elongational flows for large slip lengths, friction at the substrate for intermediate slip lengths, and viscous shear flows for small slip lengths. Following the transitions between these dominant dissipation mechanisms, our study indicates a crossover to the quasistatic regime when the slip length is small compared to the droplet size.
In this article, we describe the instability of a contact line under nonequilibrium conditions mainly based on the results of our recent studies. Two experimental examples are presented: the self-propelled motion of a liquid droplet and spontaneous dynamic pattern formation. For the self-propelled motion of a droplet, we introduce an experiment in which a droplet of aniline sitting on an aqueous layer moves spontaneously at an air-water interface. The spontaneous symmetry breaking of Marangoni-driven spreading causes regular motion. In a circular Petri dish, the droplet exhibits either beeline motion or circular motion. On the other hand, we show the emergence of a dynamic labyrinthine pattern caused by dewetting of a metastable thin film from the air-water interface. The contact line between the organic phase and aqueous phase forms a unique spatio-temporal pattern characterized as a dynamic labyrinthine. Motion of the contact line is controlled by diffusion processes. We propose a theoretical model to interpret essential aspects of the observed dynamic behavior.
The nonlinear dynamics of the free surface of an ideal conducting liquid in a strong external electric field is studied. It is establish that the equations of motion for such a liquid can be solved in the approximation in which the surface deviates from a plane by small angles. This makes it possible to show that on an initially smooth surface for almost any initial conditions points with an infinite curvature corresponding to branch points of the root type can form in a finite time.
Based on mesoscale lattice Boltzmann (LB) numerical simulations, we investigate the effects of viscoelasticity on the break-up of liquid threads in microfluidic cross-junctions, where droplets are formed by focusing a liquid thread of a dispersed (d) phase into another co-flowing continuous (c) immiscible phase. Working at small Capillary numbers, we investigate the effects of non-Newtonian phases in the transition from droplet formation at the cross-junction (DCJ) to droplet formation downstream of the cross-junction (DC) (Liu $&$ Zhang, ${it Phys. ~Fluids.}$ ${bf 23}$, 082101 (2011)). We will analyze cases with ${it Droplet ~Viscoelasticity}$ (DV), where viscoelastic properties are confined in the dispersed phase, as well as cases with ${it Matrix ~Viscoelasticity}$ (MV), where viscoelastic properties are confined in the continuous phase. Moderate flow-rate ratios $Q approx {cal O}(1)$ of the two phases are considered in the present study. Overall, we find that the effects are more pronounced in the case with MV, where viscoelasticity is found to influence the break-up point of the threads, which moves closer to the cross-junction and stabilizes. This is attributed to an increase of the polymer feedback stress forming in the corner flows, where the side channels of the device meet the main channel. Quantitative predictions on the break-up point of the threads are provided as a function of the Deborah number, i.e. the dimensionless number measuring the importance of viscoelasticity with respect to Capillary forces.
The levitation of a volatile droplet on a highly superheated surface is known as the Leidenfrost effect. Wetting state during transition from full wetting of a surface by a droplet at room temperature to Leidenfrost bouncing, i.e., zero-wetting at high superheating, is not fully understood. Here, visualizations of droplet thermal and wetting footprint in the Leidenfrost transition state are presented using two optical techniques: mid-infrared thermography and wetting sensitive total internal reflection imaging under carefully selected experimental conditions, impact Weber number < 10 and droplet diameter < capillary length, using an indium-tin-oxide coated sapphire heater. The experimental regime was designed to create relatively stable droplet dynamics, where the effects of oscillatory and capillary instabilities were minimized. The thermography for ethanol droplet in Leidenfrost transition state (superheat range of 82K-97K) revealed thermal footprint with a central hot zone surrounded by a cooler periphery, indicative of a partial wetting state during Leidenfrost transition. High-speed total internal reflection imaging also confirmed the partial wetting footprint such that there are wetting areas around a central non-wetting zone. Result presented here using ethanol as a test fluid shed light on the geometry and dynamics of a volatile droplet footprint in Leidenfrost transition state.