Do you want to publish a course? Click here

Optimization-driven Machine Learning for Intelligent Reflecting Surfaces Assisted Wireless Networks

166   0   0.0 ( 0 )
 Added by Shimin Gong
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Intelligent reflecting surface (IRS) has been recently employed to reshape the wireless channels by controlling individual scattering elements phase shifts, namely, passive beamforming. Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity and inexact channel information. In this article, we focus on machine learning (ML) approaches for performance maximization in IRS-assisted wireless networks. In general, ML approaches provide enhanced flexibility and robustness against uncertain information and imprecise modeling. Practical challenges still remain mainly due to the demand for a large dataset in offline training and slow convergence in online learning. These observations motivate us to design a novel optimization-driven ML framework for IRS-assisted wireless networks, which takes both advantages of the efficiency in model-based optimization and the robustness in model-free ML approaches. By splitting the decision variables into two parts, one part is obtained by the outer-loop ML approach, while the other part is optimized efficiently by solving an approximate problem. Numerical results verify that the optimization-driven ML approach can improve both the convergence and the reward performance compared to conventional model-free learning approaches.



rate research

Read More

68 - Wenhao Cai , Rang Liu , Yang Liu 2021
Intelligent reflecting surface (IRS) is deemed as a promising and revolutionizing technology for future wireless communication systems owing to its capability to intelligently change the propagation environment and introduce a new dimension into wireless communication optimization. Most existing studies on IRS are based on an ideal reflection model. However, it is difficult to implement an IRS which can simultaneously realize any adjustable phase shift for the signals with different frequencies. Therefore, the practical phase shift model, which can describe the difference of IRS phase shift responses for the signals with different frequencies, should be utilized in the IRS optimization for wideband and multi-band systems. In this paper, we consider an IRS-assisted multi-cell multi-band system, in which different base stations (BSs) operate at different frequency bands. We aim to jointly design the transmit beamforming of BSs and the reflection beamforming of the IRS to minimize the total transmit power subject to signal to interference-plus-noise ratio (SINR) constraints of individual user and the practical IRS reflection model. With the aid of the practical phase shift model, the influence between the signals with different frequencies is taken into account during the design of IRS. Simulation results illustrate the importance of considering the practical communication scenario on the IRS designs and validate the effectiveness of our proposed algorithm.
Reconfigurable intelligent surface (RIS) has become a promising technology for enhancing the reliability of wireless communications, which is capable of reflecting the desired signals through appropriate phase shifts. However, the intended signals that impinge upon an RIS are often mixed with interfering signals, which are usually dynamic and unknown. In particular, the received signal-to-interference-plus-noise ratio (SINR) may be degraded by the signals reflected from the RISs that originate from non-intended users. To tackle this issue, we introduce the concept of intelligent spectrum learning (ISL), which uses an appropriately trained convolutional neural network (CNN) at the RIS controller to help the RISs infer the interfering signals directly from the incident signals. By capitalizing on the ISL, a distributed control algorithm is proposed to maximize the received SINR by dynamically configuring the active/inactive binary status of the RIS elements. Simulation results validate the performance improvement offered by deep learning and demonstrate the superiority of the proposed ISL-aided approach.
In this paper, unmanned aerial vehicles (UAVs) and intelligent reflective surface (IRS) are utilized to support terahertz (THz) communications. To this end, the joint optimization of UAVs trajectory, the phase shift of IRS, the allocation of THz sub-bands, and the power control is investigated to maximize the minimum average achievable rate of all the users. An iteration algorithm based on successive Convex Approximation with the Rate constraint penalty (CAR) is developed to obtain UAVs trajectory, and the IRS phase shift is formulated as a closed-form expression with introduced pricing factors. Simulation results show that the proposed scheme significantly enhances the rate performance of the whole system.
In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the networks sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS). The IRS is deployed to mitigate the interference and enhance the signal between the D2D transmitter and the associated D2D receiver. Our objective is to jointly optimise the transmit power at the D2D transmitter and the phase shift matrix at the IRS to maximise the network sum-rate. We formulate a Markov decision process and then propose the proximal policy optimisation for solving the maximisation game. Simulation results show impressive performance in terms of the achievable rate and processing time.
As data generation increasingly takes place on devices without a wired connection, Machine Learning over wireless networks becomes critical. Many studies have shown that traditional wireless protocols are highly inefficient or unsustainable to support Distributed Machine Learning. This is creating the need for new wireless communication methods. In this survey, we give an exhaustive review of the state of the art wireless methods that are specifically designed to support Machine Learning services. Namely, over-the-air computation and radio resource allocation optimized for Machine Learning. In the over-the-air approach, multiple devices communicate simultaneously over the same time slot and frequency band to exploit the superposition property of wireless channels for gradient averaging over-the-air. In radio resource allocation optimized for Machine Learning, Active Learning metrics allow for data evaluation to greatly optimize the assignment of radio resources. This paper gives a comprehensive introduction to these methods, reviews the most important works, and highlights crucial open problems.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا