No Arabic abstract
Intelligent reflecting surface (IRS) is deemed as a promising and revolutionizing technology for future wireless communication systems owing to its capability to intelligently change the propagation environment and introduce a new dimension into wireless communication optimization. Most existing studies on IRS are based on an ideal reflection model. However, it is difficult to implement an IRS which can simultaneously realize any adjustable phase shift for the signals with different frequencies. Therefore, the practical phase shift model, which can describe the difference of IRS phase shift responses for the signals with different frequencies, should be utilized in the IRS optimization for wideband and multi-band systems. In this paper, we consider an IRS-assisted multi-cell multi-band system, in which different base stations (BSs) operate at different frequency bands. We aim to jointly design the transmit beamforming of BSs and the reflection beamforming of the IRS to minimize the total transmit power subject to signal to interference-plus-noise ratio (SINR) constraints of individual user and the practical IRS reflection model. With the aid of the practical phase shift model, the influence between the signals with different frequencies is taken into account during the design of IRS. Simulation results illustrate the importance of considering the practical communication scenario on the IRS designs and validate the effectiveness of our proposed algorithm.
This paper proposes a novel framework of resource allocation in intelligent reflecting surface (IRS) aided multi-cell non-orthogonal multiple access (NOMA) networks, where a sum-rate maximization problem is formulated. To address this challenging mixed-integer non-linear problem, we decompose it into an optimization problem (P1) with continuous variables and a matching problem (P2) with integer variables. For the non-convex optimization problem (P1), iterative algorithms are proposed for allocating transmit power, designing reflection matrix, and determining decoding order by invoking relaxation methods such as convex upper bound substitution, successive convex approximation and semidefinite relaxation. For the combinational problem (P2), swap matching-based algorithms are proposed to achieve a two-sided exchange-stable state among users, BSs and subchannels. Numerical results are provided for demonstrating that the sum-rate of the NOMA networks is capable of being enhanced with the aid of the IRS.
Intelligent reflecting surface (IRS) has been recently employed to reshape the wireless channels by controlling individual scattering elements phase shifts, namely, passive beamforming. Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity and inexact channel information. In this article, we focus on machine learning (ML) approaches for performance maximization in IRS-assisted wireless networks. In general, ML approaches provide enhanced flexibility and robustness against uncertain information and imprecise modeling. Practical challenges still remain mainly due to the demand for a large dataset in offline training and slow convergence in online learning. These observations motivate us to design a novel optimization-driven ML framework for IRS-assisted wireless networks, which takes both advantages of the efficiency in model-based optimization and the robustness in model-free ML approaches. By splitting the decision variables into two parts, one part is obtained by the outer-loop ML approach, while the other part is optimized efficiently by solving an approximate problem. Numerical results verify that the optimization-driven ML approach can improve both the convergence and the reward performance compared to conventional model-free learning approaches.
Intelligent reflecting surface (IRS) has emerged as a promising solution to enhance wireless information transmissions by adaptively controlling prorogation environment. Recently, the brand-new concept of utilizing IRS to implement a passive transmitter attracts researchers attention since it potentially realizes low-complexity and hardware-efficient transmitters of multiple-input single/multiple-output (MISO/MIMO) systems. In this paper we investigate the problem of precoder design for a low-resolution IRS-based transmitter to implement multi-user MISO/MIMO wireless communications. Particularly, the IRS modulates information symbols by varying the phases of its reflecting elements and transmits them to $K$ single-antenna or multi-antenna users. We first aim to design the symbol-level precoder for IRS to realize the modulation and minimize the maximum symbol-error-rate (SER) of single-antenna receivers. In order to tackle this NP-hard problem, we first relax the low-resolution phase-shift constraint and solve this problem by Riemannian conjugate gradient (RCG) algorithm. Then, the low-resolution symbol-level precoding vector is obtained by direct quantization. Considering the large quantization error for 1-bit resolution case, the branch-and-bound method is utilized to solve the 1-bit resolution symbol-level precoding vector. For multi-antenna receivers, we propose to iteratively design the symbol-level precoder and combiner by decomposing the original large-scale optimization problem into several sub-problems. Simulation results validate the effectiveness of our proposed algorithms.
Cognitive radio (CR) is an effective solution to improve the spectral efficiency (SE) of wireless communications by allowing the secondary users (SUs) to share spectrum with primary users. Meanwhile, intelligent reflecting surface (IRS), also known as reconfigurable intelligent surface (RIS), has been recently proposed as a promising approach to enhance energy efficiency (EE) of wireless communication systems through intelligently reconfiguring the channel environment. To improve both SE and EE, in this paper, we introduce multiple IRSs to a downlink multiple-input single-output (MISO) CR system, in which a single SU coexists with a primary network with multiple primary user receivers (PU-RXs). Our design objective is to maximize the achievable rate of SU subject to a total transmit power constraint on the SU transmitter (SU-TX) and interference temperature constraints on the PU-RXs, by jointly optimizing the beamforming at SU-TX and the reflecting coefficients at each IRS. Both perfect and imperfect channel state information (CSI) cases are considered in the optimization. Numerical results demonstrate that the introduction of IRS can significantly improve the achievable rate of SU under both perfect and imperfect CSI cases.
Channel estimation is the main hurdle to reaping the benefits promised by the intelligent reflecting surface (IRS), due to its absence of ability to transmit/receive pilot signals as well as the huge number of channel coefficients associated with its reflecting elements. Recently, a breakthrough was made in reducing the channel estimation overhead by revealing that the IRS-BS (base station) channels are common in the cascaded user-IRS-BS channels of all the users, and if the cascaded channel of one typical user is estimated, the other users cascaded channels can be estimated very quickly based on their correlation with the typical users channel cite{b5}. One limitation of this strategy, however, is the waste of user energy, because many users need to keep silent when the typical users channel is estimated. In this paper, we reveal another correlation hidden in the cascaded user-IRS-BS channels by observing that the user-IRS channel is common in all the cascaded channels from users to each BS antenna as well. Building upon this finding, we propose a novel two-phase channel estimation protocol in the uplink communication. Specifically, in Phase I, the correlation coefficients between the channels of a typical BS antenna and those of the other antennas are estimated; while in Phase II, the cascaded channel of the typical antenna is estimated. In particular, all the users can transmit throughput Phase I and Phase II. Under this strategy, it is theoretically shown that the minimum number of time instants required for perfect channel estimation is the same as that of the aforementioned strategy in the ideal case without BS noise. Then, in the case with BS noise, we show by simulation that the channel estimation error of our proposed scheme is significantly reduced thanks to the full exploitation of the user energy.