No Arabic abstract
Magneto-optical effect refers to a rotation of polarization plane, which has been widely studied in traditional ferromagnetic metal and insulator films and scarcely in two-dimensional layered materials. Here we uncover a new nonreciprocal magneto-inelastic light scattering effect in ferromagnetic few-layer CrI3. We observed a rotation of the polarization plane of inelastic light scattering between -20o and +60o that are tunable by an out-of-plane magnetic field from -2.5 to 2.5 T. It is experimentally observed that the degree of polarization can be magnetically manipulated between -20% and 85%. This work raises a new magneto-optical phenomenon and could create opportunities of applying 2D ferromagnetic materials in Raman lasing, topological photonics, and magneto-optical modulator for information transport and storage.
Long-range magnetic orders in atomically thin ferromagnetic CrI3 give rise to new fascinating physics and application perspectives. The physical properties of two-dimensional (2D) ferromagnetism CrI3 are significantly influenced by interlayer spacing and stacking order, which are sensitive to the hydrostatic pressure and external environments. However, there remains debate on the stacking order at low temperature. Here, we study the interlayer coupling and stacking order of non-encapsulated 2-5 layer and bulk CrI3 at 10 K by Raman spectroscopy; demonstrate a rhombohedral stacking in both antiferromagnetic and ferromagnetic CrI3. The opposite helicity dependence of Ag and Eg modes arising from phonon symmetry further validate the rhombohedral stacking. An anomalous temperature-dependent behavior is observed due to spin-phonon coupling below 60 K. Our work provides insights into the interlayer coupling and stacking orders of 2D ferromagnetic materials.
Probing optical excitations with high resolution is important for understanding their dynamics and controlling their interaction with other photonic elements. This can be done using state-of-the-art electron microscopes, which provide the means to sample optical excitations with combined meV--sub-nm energy--space resolution. For reciprocal photonic systems, electrons traveling in opposite directions produce identical signals, while this symmetry is broken in nonreciprocal structures. Here, we theoretically investigate this phenomenon by analyzing electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) in structures consisting of magnetically biased InAs as an instance of gyrotropic nonreciprocal material. We find that the spectral features associated with excitations of InAs films depend on the electron propagation direction in both EELS and CL, and can be tuned by varying the applied magnetic field within a relatively modest sub-tesla regime. The magnetic field modifies the optical field distribution of the sampled resonances, and this in turn produces a direction-dependent coupling to the electron. The present results pave the way to the use of electron microscope spectroscopies to explore the near-field characteristics of nonreciprocal systems with high spatial resolution.
Reducing the lateral scale of two-dimensional (2D) materials to one-dimensional (1D) has attracted substantial research interest not only to achieve competitive electronic device applications but also for the exploration of fundamental physical properties. Controllable synthesis of high-quality 1D nanoribbons (NRs) is thus highly desirable and essential for the further study. Traditional exploration of the optimal synthesis conditions of novel materials is based on the trial-and-error approach, which is time consuming, costly and laborious. Recently, machine learning (ML) has demonstrated promising capability in guiding material synthesis through effectively learning from the past data and then making recommendations. Here, we report the implementation of supervised ML for the chemical vapor deposition (CVD) synthesis of high-quality 1D few-layered WTe2 nanoribbons (NRs). The synthesis parameters of the WTe2 NRs are optimized by the trained ML model. On top of that, the growth mechanism of as-synthesized 1T few-layered WTe2 NRs is further proposed, which may inspire the growth strategies for other 1D nanostructures. Our findings suggest that ML is a powerful and efficient approach to aid the synthesis of 1D nanostructures, opening up new opportunities for intelligent material development.
The optical properties of the two-dimensional (2D) crystals are dominated by tightly bound electron-hole pairs (excitons) and lattice vibration modes (phonons). The exciton-phonon interaction is fundamentally important to understand the optical properties of 2D materials and thus help develop emerging 2D crystal based optoelectronic devices. Here, we presented the excitonic resonant Raman scattering (RRS) spectra of few-layer WS$_2$ excited by 11 lasers lines covered all of A, B and C exciton transition energies at different sample temperatures from 4 to 300 K. As a result, we are not only able to probe the forbidden phonon modes unobserved in ordinary Raman scattering, but also can determine the bright and dark state fine structures of 1s A exciton. In particular, we also observed the quantum interference between low-energy discrete phonon and exciton continuum under resonant excitation. Our works pave a way to understand the exciton-phonon coupling and many-body effects in 2D materials.
Dielectric study on Ca3Mn2O7 features relaxor-like segmented dynamics below the antiferromagnetic ordering. Dipolar relaxations of different origin are spectrally resolved exhibiting distinct H-field alterations. This identifies their allegiance to different magnetic sub-phases and establishes dual coupling of electrical, magnetic, and structural degrees of freedom. Further, strong spin-lattice coupling has been affirmed with Raman spectroscopy across the magnetic ordering. Short-range electrical correlations collaterally cause measurable harmonic dielectric response in the system. The c{hi}_3^e-susceptibility signal yields genuine harmonic magneto-dielectricity, consistent with but exhibiting two orders of magnitude larger H-field effect, vis-`a-vis that obtained in the fundamental dielectric constant {epsilon}.