No Arabic abstract
Dielectric study on Ca3Mn2O7 features relaxor-like segmented dynamics below the antiferromagnetic ordering. Dipolar relaxations of different origin are spectrally resolved exhibiting distinct H-field alterations. This identifies their allegiance to different magnetic sub-phases and establishes dual coupling of electrical, magnetic, and structural degrees of freedom. Further, strong spin-lattice coupling has been affirmed with Raman spectroscopy across the magnetic ordering. Short-range electrical correlations collaterally cause measurable harmonic dielectric response in the system. The c{hi}_3^e-susceptibility signal yields genuine harmonic magneto-dielectricity, consistent with but exhibiting two orders of magnitude larger H-field effect, vis-`a-vis that obtained in the fundamental dielectric constant {epsilon}.
From low-temperature Synchrotron X-ray diffraction, a precise thermal characterization of octahedral distortions in single phase Ruddlesden-Popper Ca3Mn2O7 is performed. Highly sensitive close-steps temperature dependences of Mn-O-Mn bond angles connecting MnO6 octahedra clearly reveal signature of the spin-ordering in the system. Spin-lattice coupling is thus established via the structural distortions responsible for evolution of the magnetic state. Further, temperature anomalies observed here in volume and polarization-measure of the unit cell highlight the interplay between spin, lattice and charge degrees of freedom. Dipole-relaxation characteristics examined under applied magnetic field consistently corroborate the concurrent magnetic and structural changes, in terms of genuine and intrinsic magneto-dielectricity.
The discovery of an ever increasing family of atomic layered magnetic materials, together with the already established vast catalogue of strong spin-orbit coupling (SOC) and topological systems, calls for some guiding principles to tailor and optimize novel spin transport and optical properties at their interfaces. Here we focus on the latest developments in both fields that have brought them closer together and make them ripe for future fruitful synergy. After outlining fundamentals on van der Waals (vdW) magnetism and SOC effects, we discuss how their coexistence, manipulation and competition could ultimately establish new ways to engineer robust spin textures and drive the generation and dynamics of spin current and magnetization switching in 2D materials-based vdW heterostructures. Grounding our analysis on existing experimental results and theoretical considerations, we draw a prospective analysis about how intertwined magnetism and spin-orbit torque (SOT) phenomena combine at interfaces with well-defined symmetries, and how this dictates the nature and figures-of-merit of SOT and angular momentum transfer. This will serve as a guiding role in designing future non-volatile memory devices that utilize the unique properties of 2D materials with the spin degree of freedom.
Based on the first-principles calculations and theoretical analysis, we investigate the electronic structures, topological phase transition (TPT) and topological properties of layered magnetic compound MnSb2Te4. It has the similar crystal and magnetic structure as the magnetic topological insulator MnBi2Te4. We find that when the spin-orbit coupling (SOC) is considered, the band structure of MnSb2Te4 in antiferromagnetic (AFM) state has no band inversion at {Gamma}. This is due to the SOC strength of Sb is less than that of Bi. The band inversion can be realized by increasing the SOC of Sb by 0.3 times, which drives MnSb2Te4 from a trivial AFM insulator to an AFM topological insulator (TI) or axion insulator. Uniaxial compressive strain along the layer stacking direction is another way to control the band inversion. The interlayer distance shorten by 5% is needed to drive the similar TPT. For the ferromagnetic (FM) MnSb2Te4 with experimental crystal structure, it is a normal FM insulator. The band inversion can happen when SOC is enhanced by 0.1 times or the interlayer distance is decreased by more than 1%. Thus, FM MnSb2Te4 can be tuned to be the simplest type-I Weyl semimetal with only one pair of Weyl nodes on the three-fold rotational axis. These two Weyl nodes are projected onto (1-10) surface with one Fermi arc connecting them.
Fundamental and harmonic magneto-dielectricity studied for varied perovskite systems-- Pb0.98Gd0.02(Mg1/3Nb2/3)0.995O3 (A-site co-doped PGMN magneto-relaxor), La0.95Ca0.05CoO3 (A-site doped spin-state LCCO), and La2NiMnO6 (double-perovskite LNMO multiglass) characterize intricately polarized phases. First-harmonic signal ({epsilon}2) of magnetically co-doped PGMN manifests finite polarization P(H) below 270K, corroborated by the measured remnant P-E traces. Second-harmonic ({epsilon}3) reveals the effect of random E-fields causing electrical vitreousity, latter indicated by the divergent timescale of the fundamental response. LCCO features mixed-dipoles phase over appreciable temperature window, affiliated to the coexistent low-spins (LS) and intermediate-spins (IS). Across the 65K-start of IS-to-LS state transition (SST), dc- and ac-conductivities of LCCO exhibit mechanism-changeovers whereas the harmonic susceptibilities evidence IS/LS-interfacial hyper-polarizations. Below the 30K-end of SST, harmonics corroborate the vitreous phase of dipoles in the LS-matrix state. In the LNMO, positive and negative (dual) magneto-dielectricity observed is respectively attributed to the charge-hopping between Ni2+ and Mn4+ ions and the interfacial polarization. Second-harmonic signal here also features dispersion corresponding to the activation energy required for the electron transfer between Ni- and Mn-cations. Results from three different perovskite systems signify the combined importance of first- and second-harmonics, for a detailed understanding of electrical configurations.
Organic-inorganic layered perovskites are two-dimensional quantum wells with layers of lead-halide octahedra stacked between organic ligand barriers. The combination of their dielectric confinement and ionic sublattice results in excitonic excitations with substantial binding energies that are strongly coupled to the surrounding soft, polar lattice. However, the ligand environment in layered perovskites can significantly alter their optical properties due to the complex dynamic disorder of soft perovskite lattice. Here, we observe the dynamic disorder through phonon dephasing lifetimes initiated by ultrafast photoexcitation employing high-resolution resonant impulsive stimulated Raman spectroscopy of a variety of ligand substitutions. We demonstrate that vibrational relaxation in layered perovskite formed from flexible alkyl-amines as organic barriers is fast and relatively independent of the lattice temperature. Relaxation in aromatic amine based layered perovskite is slower, though still fast relative to pure inorganic lead bromide lattices, with a rate that is temperature dependent. Using molecular dynamics simulations, we explain the fast rates of relaxation by quantifying the large anharmonic coupling of the optical modes with the ligand layers and rationalize the temperature independence due to their amorphous packing. This work provides a molecular and time-domain depiction of the relaxation of nascent optical excitations and opens opportunities to understand how they couple to the complex layered perovskite lattice, elucidating design principles for optoelectronic devices.