Do you want to publish a course? Click here

Regularised non-uniform segments and efficient no-slip elastohydrodynamics

91   0   0.0 ( 0 )
 Added by Benjamin Walker
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The elastohydrodynamics of slender bodies in a viscous fluid have long been the source of theoretical investigation, being pertinent to the microscale world of ciliates and flagellates as well as to biological and engineered active matter more generally. Though recent works have overcome the severe numerical stiffness typically associated with slender elastohydrodynamics, employing both local and non-local couplings to the surrounding fluid, there is no framework of comparable efficiency that rigorously justifies its hydrodynamic accuracy. In this study, we combine developments in filament elastohydrodynamics with a recent slender-body theory, affording algebraic asymptotic accuracy to the commonly imposed no-slip condition on the surface of a slender filament of potentially non-uniform cross-sectional radius. Further, we do this whilst retaining the remarkable practical efficiency of contemporary elastohydrodynamic approaches, having drawn inspiration from the method of regularised Stokeslet segments to yield an efficient and flexible slender-body theory of regularised non-uniform segments.



rate research

Read More

We present a generalisation of efficient numerical frameworks for modelling fluid-filament interactions via the discretisation of a recently-developed, non-local integral equation formulation to incorporate regularised Stokeslets with half-space boundary conditions, as motivated by the importance of confining geometries in many applications. We proceed to utilise this framework to examine the drag on slender inextensible filaments moving near a boundary, firstly with a relatively-simple example, evaluating the accuracy of resistive force theories near boundaries using regularised Stokeslet segments. This highlights that resistive force theories do not accurately quantify filament dynamics in a range of circumstances, even with analytical corrections for the boundary. However, there is the notable and important exception of movement in a plane parallel to the boundary, where accuracy is maintained. In particular, this justifies the judicious use of resistive force theories in examining the mechanics of filaments and monoflagellate microswimmers with planar flagellar patterns moving parallel to boundaries. We proceed to apply the numerical framework developed here to consider how filament elastohydrodynamics can impact drag near a boundary, analysing in detail the complex responses of a passive cantilevered filament to an oscillatory flow. In particular, we document the emergence of an asymmetric periodic beating in passive filaments in particular parameter regimes, which are remarkably similar to the power and reverse strokes exhibited by motile 9+2 cilia. Furthermore, these changes in the morphology of the filament beating, arising from the fluid-structure interactions, also induce a significant increase in the hydrodynamic drag of the filament.
Fluid-structure simulations of slender inextensible filaments in a viscous fluid are often plagued by numerical stiffness. Recent coarse-graining studies have reduced the computational requirements of simulating such systems, though have thus far been limited to the motion of planar filaments. In this work we extend such frameworks to filament motion in three dimensions, identifying and circumventing coordinate-system singularities introduced by filament parameterisation via repeated changes of basis. The resulting methodology enables efficient and rapid study of the motion of flexible filaments in three dimensions, and is readily extensible to a wide range of problems, including filament motion in confined geometries, large-scale active matter simulations, and the motility of mammalian spermatozoa.
Since their development in 2001, regularised stokeslets have become a popular numerical tool for low-Reynolds number flows since the replacement of a point force by a smoothed blob overcomes many computational difficulties associated with flow singularities (Cortez, 2001, textit{SIAM J. Sci. Comput.} textbf{23}, 1204). The physical changes to the flow resulting from this process are, however, unclear. In this paper, we analyse the flow induced by general regularised stokeslets. An explicit formula for the flow from any regularised stokeslet is first derived, which is shown to simplify for spherically symmetric blobs. Far from the centre of any regularised stokeslet we show that the flow can be written in terms of an infinite number of singularity solutions provided the blob decays sufficiently rapidly. This infinite number of singularities reduces to a point force and source dipole for spherically symmetric blobs. Slowly-decaying blobs induce additional flow resulting from the non-zero body forces acting on the fluid. We also show that near the centre of spherically symmetric regularised stokeslets the flow becomes isotropic, which contrasts with the flow anisotropy fundamental to viscous systems. The concepts developed are used to { identify blobs that reduce regularisation errors. These blobs contain regions of negative force in order to counter the flows produced in the regularisation process, but still retain a form convenient for computations.
The ability to create dynamic deformations of micron-sized structures is relevant to a wide variety of applications such as adaptable optics, soft robotics, and reconfigurable microfluidic devices. In this work we examine non-uniform lubrication flow as a mechanism to create complex deformation fields in an elastic plate. We consider a Kirchoff-Love elasticity model for the plate and Hele-Shaw flow in a narrow gap between the plate and a parallel rigid surface. Based on linearization of the Reynolds equation, we obtain a governing equation which relates elastic deformations to gradients in non-homogenous physical properties of the fluid (e.g. body forces, viscosity, and slip velocity). We then focus on a specific case of non-uniform Helmholtz-Smoluchowski electroosmotic slip velocity, and provide a method for determining the zeta-potential distribution necessary to generate arbitrary static and quasi-static deformations of the elastic plate. Extending the problem to time-dependent solutions, we analyze transient effects on asymptotically static solutions, and finally provide a closed form solution for a Greens function for time periodic actuations.
We describe a tensorial generalization of the Navier slip boundary condition and illustrate its use in solving for flows around anisotropic textured surfaces. Tensorial slip can be derived from molecular or microstructural theories or simply postulated as an constitutive relation, subject to certain general constraints on the interfacial mobility. The power of the tensor formalism is to capture complicated effects of surface anisotropy, while preserving a simple fluid domain. This is demonstrated by exact solutions for laminar shear flow and pressure-driven flow between parallel plates of arbitrary and different textures. From such solutions, the effects of rotating a texture follow from simple matrix algebra. Our results may be useful to extracting local slip tensors from global measurements, such as the permeability of a textured channel or the force required to move a patterned surface, in experiments or simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا