Do you want to publish a course? Click here

Method of regularised stokeslets: Flow analysis and improvement of convergence

164   0   0.0 ( 0 )
 Added by Lyndon Koens
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since their development in 2001, regularised stokeslets have become a popular numerical tool for low-Reynolds number flows since the replacement of a point force by a smoothed blob overcomes many computational difficulties associated with flow singularities (Cortez, 2001, textit{SIAM J. Sci. Comput.} textbf{23}, 1204). The physical changes to the flow resulting from this process are, however, unclear. In this paper, we analyse the flow induced by general regularised stokeslets. An explicit formula for the flow from any regularised stokeslet is first derived, which is shown to simplify for spherically symmetric blobs. Far from the centre of any regularised stokeslet we show that the flow can be written in terms of an infinite number of singularity solutions provided the blob decays sufficiently rapidly. This infinite number of singularities reduces to a point force and source dipole for spherically symmetric blobs. Slowly-decaying blobs induce additional flow resulting from the non-zero body forces acting on the fluid. We also show that near the centre of spherically symmetric regularised stokeslets the flow becomes isotropic, which contrasts with the flow anisotropy fundamental to viscous systems. The concepts developed are used to { identify blobs that reduce regularisation errors. These blobs contain regions of negative force in order to counter the flows produced in the regularisation process, but still retain a form convenient for computations.



rate research

Read More

190 - Boan Zhao , Lyndon Koens 2021
Slender-body approximations have been successfully used to explain many phenomena in low-Reynolds number fluid mechanics. These approximations typically use a line of singularity solutions to represent the flow. These singularities can be difficult to implement numerically because they diverge at their origin. Hence people have regularized these singularities to overcome this issue. This regularization blurs the force over a small blob therefore removing the divergent behaviour. However it is unclear how best to regularize the singularities to minimize errors. In this paper we investigate if a line of regularized Stokeslets can describe the flow around a slender body. This is achieved by comparing the asymptotic behaviour of the flow from the line of regularized Stokeslets with the results from slender-body theory. We find that the flow far from the body can be captured if the regularization parameter is proportional to the radius of the slender body. This is consistent with what is assumed in numerical simulations and provides a choice for the proportionality constant. However more stringent requirements must be placed on the regularization blob to capture the near field flow outside a slender body. This inability to replicate the local behaviour indicates that many regularizations cannot satisfy the non-slip boundary conditions on the bodies surface to leading order, with one of the most commonly used regularizations showing an angular dependency of velocity along any cross section. This problem can be overcome with compactly supported blobs { and we construct one such example blob which could be effectively used to simulate the flow around a slender body
The transitional regime of plane channel flow is investigated {above} the transitional point below which turbulence is not sustained, using direct numerical simulation in large domains. Statistics of laminar-turbulent spatio-temporal intermittency are reported. The geometry of the pattern is first characterized, including statistics for the angles of the laminar-turbulent stripes observed in this regime, with a comparison to experiments. High-order statistics of the local and instantaneous bulk velocity, wall shear stress and turbulent kinetic energy are then provided. The distributions of the two former quantities have non-trivial shapes, characterized by a large kurtosis and/or skewness. Interestingly, we observe a strong linear correlation between their kurtosis and their skewness squared, which is usually reported at much higher Reynolds number in the fully turbulent regime.
The steady motion and deformation of a lipid-bilayer vesicle translating through a circular tube in low Reynolds number pressure-driven flow are investigated numerically using an axisymmetric boundary element method. This fluid-structure interaction problem is determined by three dimensionless parameters: reduced volume (a measure of the vesicle asphericity), geometric confinement (the ratio of the vesicle effective radius to the tube radius), and capillary number (the ratio of viscous to bending forces). The physical constraints of a vesicle -- fixed surface area and enclosed volume when it is confined in a tube -- determine critical confinement beyond which it cannot pass through without rupturing its membrane. The simulated results are presented in a wide range of reduced volumes [0.6, 0.98] for different degrees of confinement; the reduced volume of 0.6 mimics red blood cells. We draw a phase diagram of vesicle shapes and propose a shape transition line separating the parachute-like shape region from the bullet-like one in the reduced volume versus confinement phase space. We show that the shape transition marks a change in the behavior of vesicle mobility, especially for highly deflated vesicles. Most importantly, high-resolution simulations make it possible for us to examine the hydrodynamic interaction between the wall boundary and the vesicle surface at conditions of very high confinement, thus providing the limiting behavior of several quantities of interest, such as the thickness of lubrication film, vesicle mobility and its length, and the extra pressure drop due to the presence of the vesicle. This extra pressure drop holds implications for the rheology of dilute vesicle suspensions. Furthermore, we present various correlations and discuss a number of practical applications.
We examine experimentally the deformation of flexible, microscale helical ribbons with nanoscale thickness subject to viscous flow in a microfluidic channel. Two aspects of flexible microhelices are quantified: the overall shape of the helix and the viscous frictional properties. The frictional coefficients determined by our experiments are consistent with calculated values in the context of resistive force theory. Deformation of helices by viscous flow is well-described by non-linear finite extensibility. Under distributed loading, the pitch distribution is non-uniform and from this, we identify both linear and non-linear behavior along the contour length of a single helix. Moreover, flexible helices are found to display reversible global to local helical transitions at high flow rate.
105 - Duo Wang , Lei Wu 2021
The movement of subaqueous sediment in laminar shearing flow is numerically investigated by the coupled lattice Boltzmann and discrete element methods. First, the numerical method is validated by comparing the phase diagram proposed by Ouriemi {it et al.} ({it J. Fluid Mech}., vol. 636, 2009, pp. 321-336). Second, a detailed study on sediment movement is performed for sediment with varying solid volume fractions, and a nonlinear relationship between the normalised thickness of the mobile layer and the normalised fluid flow rate is observed for a densely-packed sediment. Third, an independent investigation on the effective viscosity and friction coefficient of the sediment under different fluid flow rates is conducted in a shear cell; and substitution of these two critical parameters into a theoretical expression proposed by Aussillous {it et al.} ({it J. Fluid Mech}., vol. 736, 2013, pp. 594-615) provides consistent predictions of bedload thickness with the simulation results of sediment movement. Therefore, we conclude that the non-Newtonian behaviour of densely-packed sediment leads to the nonlinear relationship between the normalised thickness of the mobile layer and the normalised fluid flow rate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا