No Arabic abstract
Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns. Recently, how to detect such forgery contents has become a hot research topic and many deepfake detection methods have been proposed. Most of them model deepfake detection as a vanilla binary classification problem, i.e, first use a backbone network to extract a global feature and then feed it into a binary classifier (real/fake). But since the difference between the real and fake images in this task is often subtle and local, we argue this vanilla solution is not optimal. In this paper, we instead formulate deepfake detection as a fine-grained classification problem and propose a new multi-attentional deepfake detection network. Specifically, it consists of three key components: 1) multiple spatial attention heads to make the network attend to different local parts; 2) textural feature enhancement block to zoom in the subtle artifacts in shallow features; 3) aggregate the low-level textural feature and high-level semantic features guided by the attention maps. Moreover, to address the learning difficulty of this network, we further introduce a new regional independence loss and an attention guided data augmentation strategy. Through extensive experiments on different datasets, we demonstrate the superiority of our method over the vanilla binary classifier counterparts, and achieve state-of-the-art performance.
The widespread dissemination of forged images generated by Deepfake techniques has posed a serious threat to the trustworthiness of digital information. This demands effective approaches that can detect perceptually convincing Deepfakes generated by advanced manipulation techniques. Most existing approaches combat Deepfakes with deep neural networks by mapping the input image to a binary prediction without capturing the consistency among different pixels. In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection. We achieve this with transformer models, which have recently demonstrated superior performance in modeling dependencies between pixels for a variety of recognition tasks in computer vision. In particular, we introduce a Multi-modal Multi-scale TRansformer (M2TR), which uses a multi-scale transformer that operates on patches of different sizes to detect the local inconsistency at different spatial levels. To improve the detection results and enhance the robustness of our method to image compression, M2TR also takes frequency information, which is further combined with RGB features using a cross modality fusion module. Developing and evaluating Deepfake detection methods requires large-scale datasets. However, we observe that samples in existing benchmarks contain severe artifacts and lack diversity. This motivates us to introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods. On three Deepfake datasets, we conduct extensive experiments to verify the effectiveness of the proposed method, which outperforms state-of-the-art Deepfake detection methods.
DeepFake detection has so far been dominated by ``artifact-driven methods and the detection performance significantly degrades when either the type of image artifacts is unknown or the artifacts are simply too hard to find. In this work, we present an alternative approach: Identity-Driven DeepFake Detection. Our approach takes as input the suspect image/video as well as the target identity information (a reference image or video). We output a decision on whether the identity in the suspect image/video is the same as the target identity. Our motivation is to prevent the most common and harmful DeepFakes that spread false information of a targeted person. The identity-based approach is fundamentally different in that it does not attempt to detect image artifacts. Instead, it focuses on whether the identity in the suspect image/video is true. To facilitate research on identity-based detection, we present a new large scale dataset ``Vox-DeepFake, in which each suspect content is associated with multiple reference images collected from videos of a target identity. We also present a simple identity-based detection algorithm called the OuterFace, which may serve as a baseline for further research. Even trained without fake videos, the OuterFace algorithm achieves superior detection accuracy and generalizes well to different DeepFake methods, and is robust with respect to video degradation techniques -- a performance not achievable with existing detection algorithms.
Existing deepfake-detection methods focus on passive detection, i.e., they detect fake face images via exploiting the artifacts produced during deepfake manipulation. A key limitation of passive detection is that it cannot detect fake faces that are generated by new deepfake generation methods. In this work, we propose FaceGuard, a proactive deepfake-detection framework. FaceGuard embeds a watermark into a real face image before it is published on social media. Given a face image that claims to be an individual (e.g., Nicolas Cage), FaceGuard extracts a watermark from it and predicts the face image to be fake if the extracted watermark does not match well with the individuals ground truth one. A key component of FaceGuard is a new deep-learning-based watermarking method, which is 1) robust to normal image post-processing such as JPEG compression, Gaussian blurring, cropping, and resizing, but 2) fragile to deepfake manipulation. Our evaluation on multiple datasets shows that FaceGuard can detect deepfakes accurately and outperforms existing methods.
In recent years, the advent of deep learning-based techniques and the significant reduction in the cost of computation resulted in the feasibility of creating realistic videos of human faces, commonly known as DeepFakes. The availability of open-source tools to create DeepFakes poses as a threat to the trustworthiness of the online media. In this work, we develop an open-source online platform, known as DeepFake-o-meter, that integrates state-of-the-art DeepFake detection methods and provide a convenient interface for the users. We describe the design and function of DeepFake-o-meter in this work.
For the sake of recognizing and classifying textile defects, deep learning-based methods have been proposed and achieved remarkable success in single-label textile images. However, detecting multi-label defects in a textile image remains challenging due to the coexistence of multiple defects and small-size defects. To address these challenges, a multi-level, multi-attentional deep learning network (MLMA-Net) is proposed and built to 1) increase the feature representation ability to detect small-size defects; 2) generate a discriminative representation that maximizes the capability of attending the defect status, which leverages higher-resolution feature maps for multiple defects. Moreover, a multi-label object detection dataset (DHU-ML1000) in textile defect images is built to verify the performance of the proposed model. The results demonstrate that the network extracts more distinctive features and has better performance than the state-of-the-art approaches on the real-world industrial dataset.