Do you want to publish a course? Click here

Clustering Memes in Social Media

266   0   0.0 ( 0 )
 Added by Emilio Ferrara
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

The increasing pervasiveness of social media creates new opportunities to study human social behavior, while challenging our capability to analyze their massive data streams. One of the emerging tasks is to distinguish between different kinds of activities, for example engineered misinformation campaigns versus spontaneous communication. Such detection problems require a formal definition of meme, or unit of information that can spread from person to person through the social network. Once a meme is identified, supervised learning methods can be applied to classify different types of communication. The appropriate granularity of a meme, however, is hardly captured from existing entities such as tags and keywords. Here we present a framework for the novel task of detecting memes by clustering messages from large streams of social data. We evaluate various similarity measures that leverage content, metadata, network features, and their combinations. We also explore the idea of pre-clustering on the basis of existing entities. A systematic evaluation is carried out using a manually curated dataset as ground truth. Our analysis shows that pre-clustering and a combination of heterogeneous features yield the best trade-off between number of clusters and their quality, demonstrating that a simple combination based on pairwise maximization of similarity is as effective as a non-trivial optimization of parameters. Our approach is fully automatic, unsupervised, and scalable for real-time detection of memes in streaming data.



rate research

Read More

The Turing test aimed to recognize the behavior of a human from that of a computer algorithm. Such challenge is more relevant than ever in todays social media context, where limited attention and technology constrain the expressive power of humans, while incentives abound to develop software agents mimicking humans. These social bots interact, often unnoticed, with real people in social media ecosystems, but their abundance is uncertain. While many bots are benign, one can design harmful bots with the goals of persuading, smearing, or deceiving. Here we discuss the characteristics of modern, sophisticated social bots, and how their presence can endanger online ecosystems and our society. We then review current efforts to detect social bots on Twitter. Features related to content, network, sentiment, and temporal patterns of activity are imitated by bots but at the same time can help discriminate synthetic behaviors from human ones, yielding signatures of engineered social tampering.
110 - Rui Fan , Ke Xu , Jichang Zhao 2020
Increasing evidence suggests that, similar to face-to-face communications, human emotions also spread in online social media. However, the mechanisms underlying this emotion contagion, for example, whether different feelings spread in unlikely ways or how the spread of emotions relates to the social network, is rarely investigated. Indeed, because of high costs and spatio-temporal limitations, explorations of this topic are challenging using conventional questionnaires or controlled experiments. Because they are collection points for natural affective responses of massive individuals, online social media sites offer an ideal proxy for tackling this issue from the perspective of computational social science. In this paper, based on the analysis of millions of tweets in Weibo, surprisingly, we find that anger travels easily along weaker ties than joy, meaning that it can infiltrate different communities and break free of local traps because strangers share such content more often. Through a simple diffusion model, we reveal that weaker ties speed up anger by applying both propagation velocity and coverage metrics. To the best of our knowledge, this is the first time that quantitative long-term evidence has been presented that reveals a difference in the mechanism by which joy and anger are disseminated. With the extensive proliferation of weak ties in booming social media, our results imply that the contagion of anger could be profoundly strengthened to globalize its negative impact.
Facebook announced a community review program in December 2019 and Twitter launched a community-based platform to address misinformation, called Birdwatch, in January 2021. We provide an overview of the potential affordances of such community based approaches to content moderation based on past research. While our analysis generally supports a community-based approach to content moderation, it also warns against potential pitfalls, particularly when the implementation of the new infrastructures does not promote diversity. We call for more multidisciplinary research utilizing methods from complex systems studies, behavioural sociology, and computational social science to advance the research on crowd-based content moderation.
There has been a tremendous rise in the growth of online social networks all over the world in recent years. It has facilitated users to generate a large amount of real-time content at an incessant rate, all competing with each other to attract enough attention and become popular trends. While Western online social networks such as Twitter have been well studied, the popular Chinese microblogging network Sina Weibo has had relatively lower exposure. In this paper, we analyze in detail the temporal aspect of trends and trend-setters in Sina Weibo, contrasting it with earlier observations in Twitter. We find that there is a vast difference in the content shared in China when compared to a global social network such as Twitter. In China, the trends are created almost entirely due to the retweets of media content such as jokes, images and videos, unlike Twitter where it has been shown that the trends tend to have more to do with current global events and news stories. We take a detailed look at the formation, persistence and decay of trends and examine the key topics that trend in Sina Weibo. One of our key findings is that retweets are much more common in Sina Weibo and contribute a lot to creating trends. When we look closer, we observe that most trends in Sina Weibo are due to the continuous retweets of a small percentage of fraudulent accounts. These fake accounts are set up to artificially inflate certain posts, causing them to shoot up into Sina Weibos trending list, which are in turn displayed as the most popular topics to users.
Users online tend to consume information adhering to their system of beliefs and to ignore dissenting information. During the COVID-19 pandemic, users get exposed to a massive amount of information about a new topic having a high level of uncertainty. In this paper, we analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation concerning COVID-19. We compare the two platforms on about three million pieces of content analyzing user interaction with respect to news articles. We first describe users consumption patterns on the two platforms focusing on the political leaning of news outlets. Finally, we characterize the echo chamber effect by modeling the dynamics of users interaction networks. Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content, with a consequent affiliation towards reliable sources in terms of engagement and comments. Conversely, the lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior. Twitter users show segregation towards reliable content with a uniform narrative. Gab, instead, offers a more heterogeneous structure where users, independently of their leaning, follow people who are slightly polarized towards questionable news.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا