Do you want to publish a course? Click here

Measuring Similarity between Brands using Followers Post in Social Media

247   0   0.0 ( 0 )
 Added by Yiwei Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a new measure to estimate the similarity between brands via posts of brands followers on social network services (SNS). Our method was developed with the intention of exploring the brands that customers are likely to jointly purchase. Nowadays, brands use social media for targeted advertising because influencing users preferences can greatly affect the trends in sales. We assume that data on SNS allows us to make quantitative comparisons between brands. Our proposed algorithm analyzes the daily photos and hashtags posted by each brands followers. By clustering them and converting them to histograms, we can calculate the similarity between brands. We evaluated our proposed algorithm with purchase logs, credit card information, and answers to the questionnaires. The experimental results show that the purchase data maintained by a mall or a credit card company can predict the co-purchase very well, but not the customers willingness to buy products of new brands. On the other hand, our method can predict the users interest on brands with a correlation value over 0.53, which is pretty high considering that such interest to brands are high subjective and individual dependent.



rate research

Read More

Shaped by human movement, place connectivity is quantified by the strength of spatial interactions among locations. For decades, spatial scientists have researched place connectivity, applications, and metrics. The growing popularity of social media provides a new data stream where spatial social interaction measures are largely devoid of privacy issues, easily assessable, and harmonized. In this study, we introduced a global multi-scale place connectivity index (PCI) based on spatial interactions among places revealed by geotagged tweets as a spatiotemporal-continuous and easy-to-implement measurement. The multi-scale PCI, demonstrated at the US county level, exhibits a strong positive association with SafeGraph population movement records (10 percent penetration in the US population) and Facebooks social connectedness index (SCI), a popular connectivity index based on social networks. We found that PCI has a strong boundary effect and that it generally follows the distance decay, although this force is weaker in more urbanized counties with a denser population. Our investigation further suggests that PCI has great potential in addressing real-world problems that require place connectivity knowledge, exemplified with two applications: 1) modeling the spatial spread of COVID-19 during the early stage of the pandemic and 2) modeling hurricane evacuation destination choice. The methodological and contextual knowledge of PCI, together with the launched visualization platform and open-sourced PCI datasets at various geographic levels, are expected to support research fields requiring knowledge in human spatial interactions.
Participation on social media platforms has many benefits but also poses substantial threats. Users often face an unintended loss of privacy, are bombarded with mis-/disinformation, or are trapped in filter bubbles due to over-personalized content. These threats are further exacerbated by the rise of hidden AI-driven algorithms working behind the scenes to shape users thoughts, attitudes, and behavior. We investigate how multimedia researchers can help tackle these problems to level the playing field for social media users. We perform a comprehensive survey of algorithmic threats on social media and use it as a lens to set a challenging but important research agenda for effective and real-time user nudging. We further implement a conceptual prototype and evaluate it with experts to supplement our research agenda. This paper calls for solutions that combat the algorithmic threats on social media by utilizing machine learning and multimedia content analysis techniques but in a transparent manner and for the benefit of the users.
Deceased public figures are often said to live on in collective memory. We quantify this phenomenon by tracking mentions of 2,362 public figures in English-language online news and social media (Twitter) one year before and after death. We measure the spike and decay of attention following death and model them as the interplay of communicative and cultural memory. Clustering reveals four patterns of post-mortem memory, and regression analysis shows that boosts in media attention are largest for pre-mortem popular anglophones of any gender who died a young, unnatural death; that long-term boosts are smallest for leaders and largest for artists; and that, while both the news and Twitter are triggered by young and unnatural deaths, the news additionally curates collective memory when old persons or leaders die. Overall, we illuminate the age-old question who is remembered by society, and the distinct roles of news and social media in collective memory formation.
The contagion dynamics can emerge in social networks when repeated activation is allowed. An interesting example of this phenomenon is retweet cascades where users allow to re-share content posted by other people with public accounts. To model this type of behaviour we use a Hawkes self-exciting process. To do it properly though one needs to calibrate model under consideration. The main goal of this paper is to construct moments method of estimation of this model. The key step is based on identifying of a generator of a Hawkes process. We perform numerical analysis on real data as well.
Nowadays online social networks are used extensively for personal and commercial purposes. This widespread popularity makes them an ideal platform for advertisements. Social media can be used for both direct and word-of-mouth (WoM) marketing. Although WoM marketing is considered more effective and it requires less advertisement cost, it is currently being under-utilized. To do WoM marketing, we need to identify a set of people who can use their authoritative position in social network to promote a given product. In this paper, we show how to do WoM marketing in Facebook group, which is a question answer type of social network. We also present concept of reinforced WoM marketing, where multiple authorities can together promote a product to increase the effectiveness of marketing. We perform our experiments on Facebook group dataset consisting of 0.3 million messages and 10 million user reactions.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا