No Arabic abstract
Enhancing the light-matter interaction in two-dimensional (2D) materials with high-$Q$ resonances in photonic structures has boosted the development of optical and photonic devices. Herein, we intend to build a bridge between the radiation engineering and the bound states in the continuum (BIC), and present a general method to control light absorption at critical coupling through the quasi-BIC resonance. In a single-mode two-port system composed of graphene coupled with silicon nanodisk metasurfaces, the maximum absorption of 0.5 can be achieved when the radiation rate of the magnetic dipole resonance equals to the dissipate loss rate of graphene. Furthermore, the absorption bandwidth can be adjusted more than two orders of magnitude from 0.9 nm to 94 nm by simultaneously changing the asymmetric parameter of metasurfaces, the Fermi level and the layer number of graphene. This work reveals out the essential role of BIC in radiation engineering and provides promising strategies in controlling light absorption of 2D materials for the next-generation optical and photonic devices, e.g., light emitters, detectors, modulators, and sensors.
Recent progress in nanophotonics is driven by the desire to engineer light-matter interaction in two-dimensional (2D) materials using high-quality resonances in plasmonic and dielectric structures. Here, we demonstrate a link between the radiation control at critical coupling and the metasurface-based bound states in the continuum (BIC) physics, and develop a generalized theory to engineer light absorption of 2D materials in coupling resonance metasurfaces. In a typical example of hybrid graphene-dielectric metasurfaces, we present the manipulation of absorption bandwidth by more than one order of magnitude by simultaneously adjusting the asymmetry parameter of silicon resonators governed by BIC and the graphene surface conductivity while the absorption efficiency maintains maximum. This work reveals the generalized role of BIC in the radiation control at critical coupling and provides promising strategies in engineering light absorption of 2D materials for high-efficiency optoelectronics device applications, e.g., light emission, detection and modulation.
Enhancing the light-matter interactions in two-dimensional materials via optical metasurfaces has attracted much attention due to its potential to enable breakthrough in advanced compact photonic and quantum information devices. Here, we theoretically investigate a strong coupling between excitons in monolayer WS$_2$ and quasi-bound states in the continuum (quasi-BIC). In the hybrid structure composed of WS$_2$ coupled with asymmetric titanium dioxide nanobars, a remarkable spectral splitting and typical anticrossing behavior of the Rabi splitting can be observed, and such strong coupling effect can be modulated by shaping the thickness and asymmetry parameter of the proposed metasurfaces. It is found that the balance of line width of the quasi-BIC mode and local electric field enhancement should be considered since both of them affect the strong coupling, which is crucial to the design and optimization of metasurface devices. This work provides a promising way for controlling the light-matter interactions in strong coupling regime and opens the door for the future novel quantum, low-energy, distinctive nanodevices by advanced meta-optical engineering.
Metasurface-mediated bound states in the continuum (BIC) provides a versatile platform for light manipulation at subwavelength dimension with diverging radiative quality factor and extreme optical localization. In this work, we employ magnetic dipole quasi-BIC resonance in asymmetric silicon nanobar metasurfaces to realize giant Goos-Hanchen (GH) shift enhancement by more than three orders of wavelength. In sharp contrast to GH shift based on the Brewster dip or transmission-type resonance, the maximum GH shift here is located at the reflection peak with unity reflectance, which can be conveniently detected in the experiment. By adjusting the asymmetric parameter of metasurfaces, the $Q$-factor and GH shift can be modulated accordingly. More interestingly, it is found that GH shift exhibits an inverse quadratic dependence on the asymmetric parameter. Furthermore, we design an ultrasensitive environmental refractive index sensor based on the quasi-BIC enhanced GH shift, with a maximum sensitivity of 1.5$times$10$^{7}$ $mu$m/RIU. Our work not only reveals the essential role of BIC in engineering the basic optical phenomena, but also suggests the way for pushing the performance limits of optical communication devices, information storage, wavelength division de/multiplexers, and ultrasensitive sensors.
A patterned structure of monolithic hexagonal boron nitride (hBN) on a glass substrate, which can enhance the emission of the embedded single photon emitters (SPEs), is useful for onchip single-photon sources of high-quality. Here, we design and demonstrate a monolithic hBN metasurface with quasi-bound states in the continuum mode at emission wavelength with ultrahigh Q values to enhance fluorescence emission of SPEs in hBN. Because of ultrahigh electric field enhancement inside the proposed hBN metasurface, an ultrahigh Purcell factor (3.3*10^4) is achieved. In addition, the Purcell factor can also be strongly enhanced in most part of the hBN structure, which makes the hBN metasurface suitable for e.g. monolithic quantum photonics.
Enhanced optical absorption in two-dimensional (2D) materials has recently moved into the focus of nanophotonics research. In this work, we present a gain-assisted method to achieve critical coupling and demonstrate the maximum absorption in undoped monolayer graphene in the near-infrared. In a two-port system composed of photonic crystal slab loaded with graphene, the gain medium is introduced to adjust the dissipative rate to match the radiation rate for the critical coupling, which is accessible without changing the original structural geometry. The appropriate tuning of the gain coefficient also enables the critical coupling absorption within a wide wavelength regime for different coupling configurations. This work provides a powerful guide to manipulate light-matter interaction in 2D materials and opens up a new path to design ultra-compact and high-performance 2D material optical devices.