Do you want to publish a course? Click here

Engineering light absorption at critical coupling via bound states in the continuum

131   0   0.0 ( 0 )
 Added by Shuyuan Xiao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent progress in nanophotonics is driven by the desire to engineer light-matter interaction in two-dimensional (2D) materials using high-quality resonances in plasmonic and dielectric structures. Here, we demonstrate a link between the radiation control at critical coupling and the metasurface-based bound states in the continuum (BIC) physics, and develop a generalized theory to engineer light absorption of 2D materials in coupling resonance metasurfaces. In a typical example of hybrid graphene-dielectric metasurfaces, we present the manipulation of absorption bandwidth by more than one order of magnitude by simultaneously adjusting the asymmetry parameter of silicon resonators governed by BIC and the graphene surface conductivity while the absorption efficiency maintains maximum. This work reveals the generalized role of BIC in the radiation control at critical coupling and provides promising strategies in engineering light absorption of 2D materials for high-efficiency optoelectronics device applications, e.g., light emission, detection and modulation.



rate research

Read More

Enhancing the light-matter interaction in two-dimensional (2D) materials with high-$Q$ resonances in photonic structures has boosted the development of optical and photonic devices. Herein, we intend to build a bridge between the radiation engineering and the bound states in the continuum (BIC), and present a general method to control light absorption at critical coupling through the quasi-BIC resonance. In a single-mode two-port system composed of graphene coupled with silicon nanodisk metasurfaces, the maximum absorption of 0.5 can be achieved when the radiation rate of the magnetic dipole resonance equals to the dissipate loss rate of graphene. Furthermore, the absorption bandwidth can be adjusted more than two orders of magnitude from 0.9 nm to 94 nm by simultaneously changing the asymmetric parameter of metasurfaces, the Fermi level and the layer number of graphene. This work reveals out the essential role of BIC in radiation engineering and provides promising strategies in controlling light absorption of 2D materials for the next-generation optical and photonic devices, e.g., light emitters, detectors, modulators, and sensors.
The research of two-dimensional (2D) materials with atomic-scale thicknesses and unique optical properties has become a frontier in photonics and electronics. Borophene, a newly reported 2D material provides a novel building block for nanoscale materials and devices. We present a simple borophene-based absorption structure to boost the light-borophene interaction via critical coupling in the visible wavelengths. The proposed structure consists of borophene monolayer deposited on a photonic crystal slab backed with a metallic mirror. The numerical simulations and theoretical analysis show that the light absorption of the structure can be remarkably enhanced as high as 99.80% via critical coupling mechanism with guided resonance, and the polarization-dependent absorption behaviors are demonstrated due to the strong anisotropy of borophene. We also examine the tunability of the absorption behaviors by adjusting carrier density and lifetime of borophene, air hole radius in the slab, the incident angle and polarization angle. The proposed absorption structure provides novel access to the flexible and effective manipulation of light-borophene interactions in the visible, and shows a good prospect for the future borophene-based electronic and photonic devices.
We demonstrate that rotationally symmetric chiral metasurfaces can support arbitrarily sharp resonances with the maximum optical chirality determined by precise shaping of bound states in the continuum (BICs). Being uncoupled from one circular polarisation of light and resonantly coupled to its counterpart, a metasurface hosting the chiral BIC resonance exhibits a narrow peak in the circular dichroism spectrum. We propose a realization of such chiral BIC metasurfaces based on pairs of dielectric bars and validate the concept of maximum chirality by numerical simulations
Enhancing the light-matter interactions in two-dimensional materials via optical metasurfaces has attracted much attention due to its potential to enable breakthrough in advanced compact photonic and quantum information devices. Here, we theoretically investigate a strong coupling between excitons in monolayer WS$_2$ and quasi-bound states in the continuum (quasi-BIC). In the hybrid structure composed of WS$_2$ coupled with asymmetric titanium dioxide nanobars, a remarkable spectral splitting and typical anticrossing behavior of the Rabi splitting can be observed, and such strong coupling effect can be modulated by shaping the thickness and asymmetry parameter of the proposed metasurfaces. It is found that the balance of line width of the quasi-BIC mode and local electric field enhancement should be considered since both of them affect the strong coupling, which is crucial to the design and optimization of metasurface devices. This work provides a promising way for controlling the light-matter interactions in strong coupling regime and opens the door for the future novel quantum, low-energy, distinctive nanodevices by advanced meta-optical engineering.
We present a monolayer black phosphorus (BP)-based metamaterial structure for tunable anisotropic absorption in the mid-infrared. Based on the critical coupling mechanism of guided resonance, the structure realizes the high absorption efficiency of 99.65$%$ for TM polarization, while only 2.61$%$ at the same wavelength for TE polarization due to the intrinsic anisotropy of BP. The absorption characteristics can be flexibly controlled by changing critical coupling conditions, including the electron doping of BP, geometric parameters and incident angles of light. The results show feasibility in designing high-performance BP-based optoelectronic devices with spectral tunability and polarization selectivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا