Do you want to publish a course? Click here

Electronic Structure of a Single-Component Molecular Conductor [Pd(dddt)$_2$] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) under High Pressure

239   0   0.0 ( 0 )
 Added by Yoshikazu Suzumura
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examined high-pressure electronic structure of a single-component molecular conductor [Pd(dddt)$_2$] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) at room temperature, based on the crystal structure determined by single crystal synchrotron X-ray diffraction measurements at 5.9 GPa. The monoclinic unit cell contains four molecules that form two crystallographically independent molecular layers. A tight-binding model of 8 $times$ 8 matrix Hamiltonian gives an electronic structure as a Dirac electron system. The Dirac point describes a loop within the first Brillouin zone, and a nodal line semimetal is obtained. The noticeable property of the Dirac cone with a linear dispersion is shown by calculating density of states (DOS). The Dirac cone in this system is associated with the crossing of HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) bands, which originates from the direct interaction between different molecular layers. This is a newly found mechanism in addition to the indirect one [J. Phys. Soc. Jpn., {bf 86}, 064705 (2017)]. The Dirac points emerge as a line, when the HOMO and LUMO bands meet on the surface and the HOMO-LUMO couplings are absent. Such a mechanism is verified using a reduced model of 4 $times$ 4 matrix Hamiltonian. The deviation of the band energy ($delta E$) at the Dirac point from the Fermi level is very small ($delta E < $ 0.4meV). The nodal line is examined by calculating the parity of the occupied band eigen states at TRIM (Time Reversal Invariant Momentum) showing that the topological number is 1.



rate research

Read More

Using first-principles density-functional theory calculations, we obtain the non-coplanar nodal loop for a single-component molecular conductor [Pd(dddt)$_2$] consisting of HOMO and LUMO with different parity. Focusing on two typical Dirac points, we present a model of an effective 2 $times$ 2 matrix Hamiltonian in terms of two kinds of velocities associated with the nodal line. The base of the model is taken as HOMO and LUMO on each Dirac point, where two band energies degenerate and the off diagonal matrix element vanishes. The present model, which reasonably describes the Dirac cone in accordance with the first-principles calculation, provides a new method of analyzing electronic states of a topological nodal line semimetal.
We examine an effect of acoustic phonon scattering on an electric conductivity of single-component molecular conductor [Pd(dddt)$_2$] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) with a half-filled band by applying the previous calculation in a two-dimensional model with Dirac cone [Phys. Rev. B {bf 98},161205 (2018)], where the electric transport by the impurity scattering exhibits the noticeable interplay of the Dirac cone and the phonon scattering,resulting in a maximum of the conductivity with increasing temperature. The conductor shows a nodal line semimetal where the band crossing of HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) provides a loop of Dirac points located close to the Fermi energy followed by the density of states (DOS) similar to that of two-dimensional Dirac cone. Using a tight-binding (TB) model [arXiv:2008.09277], which was obtained using the crystal structure observed from a recent X ray diffraction experiment under pressure, it is shown that the obtained conductivity explains reasonably the anomalous behavior in [Pd(dddt)$_2$] exhibiting almost temperature independent resistivity at finite temperatures. This paper demonstrates a crucial role of the acoustic phonon scattering at finite temperatures in the electric conductivity of Dirac electrons. The present theoretical results of conductivity are compared with those of experiments.
The layered crystal of EuSn$_2$As$_2$ has a Bi$_2$Te$_3$-type structure in rhombohedral ($Rbar{3}m$) symmetry and has been confirmed to be an intrinsic magnetic topological insulator at ambient conditions. Combining {it ab initio} calculations and emph{in-situ} x-ray diffraction measurements, we identify a new monoclinic EuSn$_2$As$_2$ structure in $C2/m$ symmetry above $sim$14 GPa. It has a three-dimensional network made up of honeycomb-like Sn sheets and zigzag As chains, transformed from the layered EuSn$_2$As$_2$ via a two-stage reconstruction mechanism with the connecting of Sn-Sn and As-As atoms successively between the buckled SnAs layers. Its dynamic structural stability has been verified by phonon mode analysis. Electrical resistance measurements reveal an insulator-metal-superconductor transition at low temperature around 5 and 15 GPa, respectively, according to the structural conversion, and the superconductivity with a textit{T}${rm {_C}}$ value of $sim 4$ K is observed up to 30.8 GPa. These results establish a high-pressure EuSn$_2$As$_2$ phase with intriguing structural and electronic properties and expand our understandings about the layered magnetic topological insulators.
Based on the unbiased structure prediction, we showed that the stable form of NiSi compound under the pressure of 100 and 200 GPa is the Pmmn-structure. Furthermore, we discovered a new stable phase - the deformed tetragonal CsCl-type structure with a = 2.174 {AA} and c = 2.69 {AA} at 400 GPa. Specifically, the sequence of high-pressure phase transitions is the following: the Pmmn-structure - below 213 GPa, the tetragonal CsCl-type - in the range 213-522 GPa, and cubic CsCl - higher than 522 GPa. As the CsCl-type structure is considered as the model structure of FeSi compound at the conditions of the Earths core, this result implies restrictions on the Fe-Ni isomorphic miscibility in FeSi.
Optical conductivity [s(w)] of Ce-filled skutterudite CeRu4Sb12 has been measured at high pressure to 8 GPa and at low temperature, to probe the pressure evolution of its electronic structures. At ambient pressure, a mid-infrared peak at 0.1 eV was formed in s(w) at low temperature, and the spectral weight below 0.1 eV was strongly suppressed, due to a hybridization of the f electron and conduction electron states. With increasing external pressure, the mid-infrared peak shifts to higher energy, and the spectral weight below the peak was further depleted. The obtained spectral data are analyzed in comparison with band calculation result and other reported physical properties. It is shown that the electronic structure of CeRu4Sb12 becomes similar to that of a narrow-gap semiconductor under external pressure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا