Do you want to publish a course? Click here

Optical Conductivity and Electronic Structure of CeRu4Sb12 under High Pressure

121   0   0.0 ( 0 )
 Added by Hidekazu Okamura
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical conductivity [s(w)] of Ce-filled skutterudite CeRu4Sb12 has been measured at high pressure to 8 GPa and at low temperature, to probe the pressure evolution of its electronic structures. At ambient pressure, a mid-infrared peak at 0.1 eV was formed in s(w) at low temperature, and the spectral weight below 0.1 eV was strongly suppressed, due to a hybridization of the f electron and conduction electron states. With increasing external pressure, the mid-infrared peak shifts to higher energy, and the spectral weight below the peak was further depleted. The obtained spectral data are analyzed in comparison with band calculation result and other reported physical properties. It is shown that the electronic structure of CeRu4Sb12 becomes similar to that of a narrow-gap semiconductor under external pressure.



rate research

Read More

Through advanced experimental techniques on CrI$_{3}$ single crystals, we derive a previously not discussed pressure-temperature phase diagram. We find that $T_{c}$ increases to $sim$ 66,K with pressure up to $sim$ 3,GPa followed by a decrease to $sim$ 10,K at 21.2,GPa. The experimental results are reproduced by theoretical calculations based on density functional theory where electron-electron interactions are treated by a static on-site Hubbard U on Cr 3$d$ orbitals. The origin of the pressure induced reduction of the ordering temperature is associated with a decrease of the calculated bond angle, from 95$^{circ}$ at ambient pressure to $sim$ 85$^{circ}$ at 25,GPa. Above 22,GPa, the magnetically ordered state is essentially quenched, possibly driving the system to a Kitaev spin-liquid state at low temperature, thereby opening up the possibility of further exploration of long-range quantum entanglement between spins. The pressure-induced semiconductor-to-metal phase transition was revealed by high-pressure resistivity that is accompanied by a transition from a robust ferromagnetic state to gradually more dominating anti-ferromagnetic interactions and was consistent with theoretical modeling.
We report temperature-dependent polarized optical conductivity [$sigma(omega)$] spectra of CeFe$_2$Al$_{10}$, which is a reference material for CeRu$_2$Al$_{10}$ and CeOs$_2$Al$_{10}$ with an anomalous magnetic transition at 28 K. The $sigma(omega)$ spectrum along the b-axis differs greatly from that in the $ac$-plane, indicating that this material has an anisotropic electronic structure. At low temperatures, in all axes, a shoulder structure due to the optical transition across the hybridization gap between the conduction band and the localized $4f$ states, namely $c$-$f$ hybridization, appears at 55 meV. However, the gap opening temperature and the temperature of appearance of the quasiparticle Drude weight are strongly anisotropic indicating the anisotropic Kondo temperature. The strong anisotropic nature in both electronic structure and Kondo temperature is considered to be relevant the anomalous magnetic phase transition in CeRu$_2$Al$_{10}$ and CeOs$_2$Al$_{10}$.
We present bulk property measurements of NpIr, a newly synthesized member of the Np-Ir binary phase diagram, which is isostructural to the non-centrosymmetric pressure-induced ferromagnetic superconductor UIr. Magnetic susceptibility, electronic transport properties at ambient and high pressure, and heat capacity measurements have been performed for temperature T = 0.55 - 300 K, in a range of magnetic fields up to 14 T and under pressures up to 17.3 GPa. These reveal that NpIr is a moderately heavy fermion Kondo system with strong antiferromagnetic interactions, but there is no evidence of any phase transition down to 0.55 K or at the highest pressure achieved. Experimental results are compared with ab initio calculations of the electronic band structure and lattice heat capacity. An extremely low lattice thermal conductivity is predicted for NpIr at temperatures above 300 K.
132 - C. H. Lee , I. Hase , H. Sugawara 2006
The phonon dynamics of filled skutterudite CeRu4Sb12 have been studied at room temperature by inelastic neutron scattering. Optical phonons associated with a large vibration of Ce atoms are observed at a relatively low energy of E = 6 meV, and show anticrossing behavior with acoustic phonons. We propose that the origin of the low lattice thermal conductivity in filled skutterudites can be attributed to intensive Umklapp scattering originating from low-lying optical phonons. By an analysis based on a Born-von Karman force model, the longitudinal force constants of the nearest Ce-Sb and Ce-Ru pairs are estimated to be 0.025 mdyn/A, while that of the nearest Ru-Sb pair is estimated to be 1.4 mdyn/A, indicating that the Ce atoms are bound very weakly to the surrounding rigid RuSb6-octahedron cages.
Resistivity measurements were carried out up to 8 GPa on single crystal and polycrystalline samples of CeCu2Si2 from differing sources in the homogeneity range. The anisotropic response to current direction and small uniaxial stresses was explored, taking advantage of the quasi-hydrostatic environment of the Bridgman anvil cell. It was found that both the superconducting transition temperature Tc and the normal state properties are very sensitive to uniaxial stress, which leads to a shift of the valence instability pressure Pv and a small but significant change in Tc for different orientations with respect to the tetragonal c-axis. Coexistence of superconductivity and residual resistivity close to the Ioffe-Regel limit around 5 GPa provides a compelling argument for the existence of a valence-fluctuation mediated pairing interaction at high pressure in CeCu2Si2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا