No Arabic abstract
We confirm the presence of a mean-field Bose glass in 2D quasicrystalline Bose-Hubbard models. We focus on two models where the aperiodic component is present in different parts of the problem. First, we consider a 2D generalisation of the Aubry-Andre model, where the lattice geometry is that of a square with a quasiperiodic onsite potential. Second, we consider the randomly disordered vertex model, which takes aperiodic tilings with non-crystalline rotational symmetries, and forms lattices from the vertices and lengths of the tiles. For the disordered vertex models, the mean-field Bose glass forms across large ranges of the chemical potential, and we observe no significant differences from the case of a square lattice with uniform random disorder. Small variations in the critical points in the presence of random disorder between quasicrystalline and crystalline lattice geometries can be accounted for by the varying coordination number and the different rotational symmetries present. In the 2D Aubry-Andre model, substantial differences are observed from the usual phase diagrams of crystalline disordered systems. We show that weak modulation lines can be predicted from the underlying potential and may stabilise or suppress the mean-field Bose glass in certain regimes. This results in a lobe-like structure for the mean-field Bose glass in the 2D Aubry-Andre model, which is significantly different from the case of random disorder. Together, the two quasicrystalline models studied in this work show that the mean-field Bose glass phase is present, as expected for 2D quasiperiodic models. However, a quasicrystalline geometry is not sufficient to result in differences from crystalline realisations of the Bose glass, whereas a quasiperiodic form of disorder can result in different physics, as we observe in the 2D Aubry-Andre model.
The existence of many-body mobility edges in closed quantum systems has been the focus of intense debate after the emergence of the description of the many-body localization phenomenon. Here we propose that this issue can be settled in experiments by investigating the time evolution of local degrees of freedom, tailored for specific energies and initial states. An interacting model of spinless fermions with exponentially long-ranged tunneling amplitudes, whose non-interacting version known to display single-particle mobility edges, is used as the starting point upon which nearest-neighbor interactions are included. We verify the manifestation of many-body mobility edges by using numerous probes, suggesting that one cannot explain their appearance as merely being a result of finite-size effects.
Precise nature of MBL transitions in both random and quasiperiodic (QP) systems remains elusive so far. In particular, whether MBL transitions in QP and random systems belong to the same universality class or two distinct ones has not been decisively resolved. Here we investigate MBL transitions in one-dimensional ($d!=!1$) QP systems as well as in random systems by state-of-the-art real-space renormalization group (RG) calculation. Our real-space RG shows that MBL transitions in 1D QP systems are characterized by the critical exponent $ u!approx!2.4$, which respects the Harris-Luck bound ($ u!>!1/d$) for QP systems. Note that $ u!approx! 2.4$ for QP systems also satisfies the Harris-CCFS bound ($ u!>!2/d$) for random systems, which implies that MBL transitions in 1D QP systems are stable against weak quenched disorder since randomness is Harris irrelevant at the transition. We shall briefly discuss experimental means to measure $ u$ of QP-induced MBL transitions.
The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the best-known examples are Bose-Einstein condensation (BEC) and superfluidity, which have been tested experimentally in a variety of different systems. When bosons are interacting, disorder can destroy condensation leading to a so-called Bose glass. This phase has been very elusive to experiments due to the absence of any broken symmetry and of a finite energy gap in the spectrum. Here we report the observation of a Bose glass of field-induced magnetic quasiparticles in a doped quantum magnet (Br-doped dichloro-tetrakis-thiourea-Nickel, DTN). The physics of DTN in a magnetic field is equivalent to that of a lattice gas of bosons in the grand-canonical ensemble; Br-doping introduces disorder in the hoppings and interaction strengths, leading to localization of the bosons into a Bose glass down to zero field, where it acquires the nature of an incompressible Mott glass. The transition from the Bose glass (corresponding to a gapless spin liquid) to the BEC (corresponding to a magnetically ordered phase) is marked by a novel, universal exponent governing the scaling on the critical temperature with the applied field, in excellent agreement with theoretical predictions. Our study represents the first, quantitative account of the universal features of disordered bosons in the grand-canonical ensemble.
We investigate a spatial subsystem entropy extracted from the one-particle density matrix (OPDM) in one-dimensional disordered interacting fermions that host a many-body localized (MBL) phase. Deep in the putative MBL regime, this OPDM entropy exhibits the salient features of localization, despite not being a proper entanglement measure. We numerically show that the OPDM entropy of the eigenstates obeys an area law. Similar to the von-Neumann entropy, the OPDM entropy grows logarithmically with time after a quantum quench, albeit with a different prefactor. Both these features survive at moderately large interactions and well towards the transition into the ergodic phase. The computational cost to calculate the OPDM entropy scales only polynomially with the system size, suggesting that the OPDM provides a promising starting point for developing diagnostic tools for MBL in simulations and experiments.
To reduce the rapidly growing computational cost of the dual fermion lattice calculation with increasing system size, we introduce two embedding schemes. One is the real fermion embedding, and the other is the dual fermion embedding. Our numerical tests show that the real fermion and dual fermion embedding approaches converge to essentially the same result. The application on the Anderson disorder and Hubbard models shows that these embedding algorithms converge more quickly with system size as compared to the conventional dual fermion method, for the calculation of both single-particle and two-particle quantities.