Do you want to publish a course? Click here

Multiple chiral bands in $^{137}$Nd

130   0   0.0 ( 0 )
 Added by Costel Petrache
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Two new bands have been identified in $^{137}$Nd from a high-statistics JUROGAM II gamma-ray spectroscopy experiment. Constrained density functional theory and particle rotor model calculations are used to assign configurations and investigate the band properties, which are well described and understood. It is demonstrated that these two new bands can be interpreted as chiral partners of previously known three-quasiparticle positive- and negative-parity bands. The newly observed chiral doublet bands in $^{137}$Nd represent an important support to the existence of multiple chiral bands in nuclei. The present results constitute the missing stone in the series of Nd nuclei showing multiple chiral bands, which becomes the most extended sequence of nuclei presenting multiple chiral bands in the Segre chart.



rate research

Read More

One new pair of positive-parity chiral doublet bands have been identified in the odd-$A$ nucleus $^{135}$Nd which together with the previously reported negative-parity chiral doublet bands constitute a third case of multiple chiral doublet (M$chi$D) bands in the $Aapprox130$ mass region. The properties of the M$chi$D bands are well reproduced by constrained covariant density functional theory and particle rotor model calculations. The newly observed M$chi$D bands in $^{135}$Nd represents an important milestone in supporting the existence of M$chi$D in nuclei.
513 - I. Kuti , Q. B. Chen , J. Timar 2014
Three sets of chiral doublet band structures have been identified in the 103Rh nucleus. The properties of the observed chiral doublet bands are in good agreement with theoretical results obtained using constrained covariant density functional theory and particle rotor model calculations. Two of them belong to an identical configuration, and provide the first experimental evidence for a novel type of multiple chiral doublets, where an excited chiral doublet of a configuration is seen together with the yrast one. This observation shows that the chiral geometry in nuclei can be robust against the increase of the intrinsic excitation energy.
New transitions in neutron rich $^{100}$Y have been identified in a $^9$Be+$^{238}$U experiment with mass- and Z- gates to provide full fragment identification. These transitions and high spin levels of $^{100}$Y have been investigated by analyzing the high statistics $gamma$-$gamma$-$gamma$ and $gamma$-$gamma$-$gamma$-$gamma$ coincidence data from the spontaneous fission of $^{252}$Cf at the Gammasphere detector array. Two new bands, 14 new levels and 23 new transitions have been identified. The $K^{pi}=4^+$ new band decaying to an 1s isomeric state is assigned to be the high-$K$ Gallagher-Moszkowski (GM) partner of the known $K^{pi}=1^+$ band, with the $pi 5/2[522] otimes u 3/2[411]$ configuration. This 4$^+$ band is also proposed to be the pseudo spin partner of the new $K^{pi}=5^+$ band with a 5$^{+}$ $pi 5/2[422] otimes u 5/2[413]$ configuration, to form a $pi 5/2[422] otimes u [312$ $5/2,3/2]$ neutron pseudospin doublet. Constrained triaxial covariant density functional theory and quantal particle rotor model calculations have been applied to interpret the band structure and available electromagnetic transition probabilities and are found in good agreement with experimental values.
489 - T. Trivedi , R. Palit , J. Sethi 2012
High spin states in $^{112}$In were investigated using $^{100}$Mo($^{16}$O, p3n) reaction at 80 MeV. The excited level have been observed up to 5.6 MeV excitation energy and spin $sim$ 20$hbar$ with the level scheme showing three dipole bands. The polarization and lifetime measurements were carried out for the dipole bands. Tilted axis cranking model calculations were performed for different quasi-particle configurations of this doubly odd nucleus. Comparison of the calculations of the model with the B(M1) transition strengths of the positive and negative parity bands firmly established their configurations.
The $^{150}$Nd($^3$He,$t$) reaction at 140 MeV/u and $^{150}$Sm($t$,$^3$He) reaction at 115 MeV/u were measured, populating excited states in $^{150}$Pm. The transitions studied populate intermediate states of importance for the (neutrinoless) $betabeta$ decay of $^{150}$Nd to $^{150}$Sm. Monopole and dipole contributions to the measured excitation-energy spectra were extracted by using multipole decomposition analyses. The experimental results were compared with theoretical calculations obtained within the framework of Quasiparticle Random-Phase Approximation (QRPA), which is one of the main methods employed for estimating the half-life of the neutrinoless $betabeta$ decay ($0 ubetabeta$) of $^{150}$Nd. The present results thus provide useful information on the neutrino responses for evaluating the $0 ubetabeta$ and $2 ubetabeta$ matrix elements. The $2 ubetabeta$ matrix element calculated from the Gamow-Teller transitions through the lowest $1^{+}$ state in the intermediate nucleus is maximally about half of that deduced from the half-life measured in $2 ubetabeta$ direct counting experiments and at least several transitions through $1^{+}$ intermediate states in $^{150}$Pm are required to explain the $2 ubetabeta$ half-life. Because Gamow-Teller transitions in the $^{150}$Sm($t$,$^3$He) experiment are strongly Pauli-blocked, the extraction of Gamow-Teller strengths was complicated by the excitation of the $2hbaromega$, $Delta L=0$, $Delta S=1$ isovector spin-flip giant monopole resonance (IVSGMR). However, the near absence of Gamow-Teller transition strength made it possible to cleanly identify this resonance, and the strength observed is consistent with the full exhaustion of the non-energy-weighted sum rule for the IVSGMR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا