Do you want to publish a course? Click here

Chirality of $^{135}$Nd reexamined: Evidence for multiple chiral doublet bands

271   0   0.0 ( 0 )
 Added by Costel Petrache
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

One new pair of positive-parity chiral doublet bands have been identified in the odd-$A$ nucleus $^{135}$Nd which together with the previously reported negative-parity chiral doublet bands constitute a third case of multiple chiral doublet (M$chi$D) bands in the $Aapprox130$ mass region. The properties of the M$chi$D bands are well reproduced by constrained covariant density functional theory and particle rotor model calculations. The newly observed M$chi$D bands in $^{135}$Nd represents an important milestone in supporting the existence of M$chi$D in nuclei.



rate research

Read More

Two new bands have been identified in $^{137}$Nd from a high-statistics JUROGAM II gamma-ray spectroscopy experiment. Constrained density functional theory and particle rotor model calculations are used to assign configurations and investigate the band properties, which are well described and understood. It is demonstrated that these two new bands can be interpreted as chiral partners of previously known three-quasiparticle positive- and negative-parity bands. The newly observed chiral doublet bands in $^{137}$Nd represent an important support to the existence of multiple chiral bands in nuclei. The present results constitute the missing stone in the series of Nd nuclei showing multiple chiral bands, which becomes the most extended sequence of nuclei presenting multiple chiral bands in the Segre chart.
512 - I. Kuti , Q. B. Chen , J. Timar 2014
Three sets of chiral doublet band structures have been identified in the 103Rh nucleus. The properties of the observed chiral doublet bands are in good agreement with theoretical results obtained using constrained covariant density functional theory and particle rotor model calculations. Two of them belong to an identical configuration, and provide the first experimental evidence for a novel type of multiple chiral doublets, where an excited chiral doublet of a configuration is seen together with the yrast one. This observation shows that the chiral geometry in nuclei can be robust against the increase of the intrinsic excitation energy.
93 - J. Peng , Q. B. Chen 2020
The three-dimensional tilted axis cranking covariant density functional theory (3D-TAC CDFT) is used to study the chiral modes in $^{135}$Nd. By modeling the motion of the nucleus in rotating mean field as the interplay between the single-particle motions of several valence particle(s) and hole(s) and the collective motion of a core-like part, a classical Routhian is extracted. This classical Routhian gives qualitative agreement with the 3D-TAC CDFT result for the critical frequency corresponding to the transition from planar to aplanar rotation. Based on this investigation a possible understanding of tilted rotation appearing in a microscopic theory is provided.
New transitions in neutron rich $^{100}$Y have been identified in a $^9$Be+$^{238}$U experiment with mass- and Z- gates to provide full fragment identification. These transitions and high spin levels of $^{100}$Y have been investigated by analyzing the high statistics $gamma$-$gamma$-$gamma$ and $gamma$-$gamma$-$gamma$-$gamma$ coincidence data from the spontaneous fission of $^{252}$Cf at the Gammasphere detector array. Two new bands, 14 new levels and 23 new transitions have been identified. The $K^{pi}=4^+$ new band decaying to an 1s isomeric state is assigned to be the high-$K$ Gallagher-Moszkowski (GM) partner of the known $K^{pi}=1^+$ band, with the $pi 5/2[522] otimes u 3/2[411]$ configuration. This 4$^+$ band is also proposed to be the pseudo spin partner of the new $K^{pi}=5^+$ band with a 5$^{+}$ $pi 5/2[422] otimes u 5/2[413]$ configuration, to form a $pi 5/2[422] otimes u [312$ $5/2,3/2]$ neutron pseudospin doublet. Constrained triaxial covariant density functional theory and quantal particle rotor model calculations have been applied to interpret the band structure and available electromagnetic transition probabilities and are found in good agreement with experimental values.
The static quadrupole moments (SQMs) of nuclear chiral doublet bands are investigated for the first time taking the particle-hole configuration $pi(1h_{11/2}) otimes u(1h_{11/2})^{-1}$ with triaxial deformation parameters in the range $260^circ leq gamma leq 270^circ$ as examples. The behavior of the SQM as a function of spin $I$ is illustrated by analyzing the components of the total angular momentum. It is found that in the region of chiral vibrations the SQMs of doublet bands are strongly varying with $I$, whereas in the region of static chirality the SQMs of doublet bands are almost constant. Hence, the measurement of SQMs provides a new criterion for distinguishing the modes of nuclear chirality. Moreover, in the high-spin region the SQMs can be approximated by an analytic formula with a proportionality to $cosgamma$ for both doublet bands. This provides a way to extract experimentally the triaxial deformation parameter $gamma$ for chiral bands from the measured SQMs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا