Do you want to publish a course? Click here

The $^{150}$Nd($^3$He,$t$) and $^{150}$Sm($t$,$^3$He) reactions with applications to $betabeta$ decay of $^{150}$Nd

207   0   0.0 ( 0 )
 Added by Carol Guess
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

The $^{150}$Nd($^3$He,$t$) reaction at 140 MeV/u and $^{150}$Sm($t$,$^3$He) reaction at 115 MeV/u were measured, populating excited states in $^{150}$Pm. The transitions studied populate intermediate states of importance for the (neutrinoless) $betabeta$ decay of $^{150}$Nd to $^{150}$Sm. Monopole and dipole contributions to the measured excitation-energy spectra were extracted by using multipole decomposition analyses. The experimental results were compared with theoretical calculations obtained within the framework of Quasiparticle Random-Phase Approximation (QRPA), which is one of the main methods employed for estimating the half-life of the neutrinoless $betabeta$ decay ($0 ubetabeta$) of $^{150}$Nd. The present results thus provide useful information on the neutrino responses for evaluating the $0 ubetabeta$ and $2 ubetabeta$ matrix elements. The $2 ubetabeta$ matrix element calculated from the Gamow-Teller transitions through the lowest $1^{+}$ state in the intermediate nucleus is maximally about half of that deduced from the half-life measured in $2 ubetabeta$ direct counting experiments and at least several transitions through $1^{+}$ intermediate states in $^{150}$Pm are required to explain the $2 ubetabeta$ half-life. Because Gamow-Teller transitions in the $^{150}$Sm($t$,$^3$He) experiment are strongly Pauli-blocked, the extraction of Gamow-Teller strengths was complicated by the excitation of the $2hbaromega$, $Delta L=0$, $Delta S=1$ isovector spin-flip giant monopole resonance (IVSGMR). However, the near absence of Gamow-Teller transition strength made it possible to cleanly identify this resonance, and the strength observed is consistent with the full exhaustion of the non-energy-weighted sum rule for the IVSGMR.



rate research

Read More

Double-beta decay is a rare nuclear process in which two neutrons in the nucleus are converted to two protons with the emission of two electrons and two electron anti-neutrinos. We measured the half life of the two-neutrino double-beta decay of $^{150}$Nd to excited final states of $^{150}$Sm by detecting the de-excitation gamma rays of the daughter nucleus. This study yields the first detection of the coincidence gamma rays from the 0$^+_1$ excited state of $^{150}$Sm. These gamma rays have energies of 333.97 keV and 406.52 keV, and are emitted in coincidence through a 0$^+_1rightarrow$2$^+_1rightarrow$0$^+_{gs}$ transition. The enriched Nd$_2$O$_3$ sample consisted of 40.13 g $^{150}$Nd and was observed for 642.8 days at the Kimballton Underground Research Facility, producing 21.6 net events in the region of interest. This count rate gives a half life of $T_{1/2}=(1.07^{+0.45}_{-0.25}(stat)pm0.07(syst.))times 10^{20}$ years. The effective nuclear matrix element was found to be 0.0465$^{+0.0098}_{-0.0054}$. Finally, lower limits were obtained for decays to higher excited final states. Our half-life measurement agrees within uncertainties with another recent measurement in which no coincidence was employed. Our nuclear matrix element calculation may have an impact on a recent neutrinoless double-beta decay nuclear matrix element calculation which implies the decay to the first excited state in $^{150}$Sm is favored over that to the ground state.
The double beta decay of $^{150}$Nd to the first excited 0$^+$ level of $^{150}$Sm ($E_{exc}$ = 740.5 keV) has been investigated with the help of the ultra-low-background setup consisting of four HP Ge (high-purity germanium) detectors (${approx}$ 225 cm$^3$ volume each one) at the Gran Sasso underground laboratory of INFN (Italy). A highly purified 2.381-kg sample of neodymium oxide (Nd$_2$O$_3$) was used as a source of ${gamma}$ quanta expected in the decays. Gamma quanta with energies 334.0 keV and 406.5 keV emitted after deexcitation of the $0_1^+$ 740.5 keV level of $^{150}$Sm are observed in the coincidence spectra accumulated over 16375 h. The half-life relatively to the two neutrino double beta decay $^{150}$Nd $rightarrow$ $^{150}$Sm(0$_1^+$) is measured as $T_{1/2} = [4.7_{-1.9}^{+4.1}text{(stat)} {pm} 0.5text{(syst)}] {times} 10^{19} y$, in agreement with results of previous experiments.
We report the results of a first experimental search for lepton number violation by four units in the neutrinoless quadruple-$beta$ decay of $^{150}$Nd using a total exposure of $0.19$ kg$cdot$y recorded with the NEMO-3 detector at the Modane Underground Laboratory (LSM). We find no evidence of this decay and set lower limits on the half-life in the range $T_{1/2}>(1.1-3.2)times10^{21}$ y at the $90%$ CL, depending on the model used for the kinematic distributions of the emitted electrons.
Background: Inelastic proton scattering at energies of a few hundred MeV and very-forward angles including $0^circ$ has been established as a tool to study electric-dipole strength distributions in nuclei. The present work reports a systematic investigation of the chain of stable even-mass Nd isotopes representing a transition from spherical to quadrupole-deformed nuclei. Purpose: Extraction of the equivalent photo-absorption cross sections and analysis of their fine structure in the energy region of the IsoVector Giant Dipole Resonance (IVGDR). Method: Proton inelastic scattering reactions of 200 MeV protons were measured at iThemba LABS in Cape Town, South Africa. The scattering products were momentum-analysed by the K600 magnetic spectrometer positioned at $theta_{mathrm{Lab}}=0^circ$. Using dispersion-matching techniques, energy resolutions of $Delta E approx 40 - 50$ keV were obtained. After subtraction of background and contributions from other multipoles, the spectra were converted to photo-absorption cross sections using the equivalent virtual-photon method. Results: Wavelet-analysis techniques are used to extract characteristic energy scales of the fine structure of the IVGDR from the experimental data. Comparisons with the Quasiparticle-Phonon Model (QPM) and Skyrme Separable Random Phase Approximation (SSRPA) predictions provide insight into the role of different giant resonance damping mechanisms. Conclusions: Fine structure is observed even for the most deformed nuclei studied. Fragmentation of the one particle-one hole ($1p1h$) strength seems to be the main source of fine structure in both spherical and deformed nuclei. Some impact of the spreading due to coupling of the two particle-two hole ($2p2h$) states to the $1p1h$ doorway states is seen in the spherical/transitional nuclei, where calculations beyond the $1p1h$ level are available.
86 - H. Ejiri , S.R. Elliott 2017
Solar neutrinos interact within double-beta decay (BB) detectors and contribute to backgrounds for BB experiments. Background contributions due to solar neutrino interactions with BB nuclei of $^{82}$Se, $^{100}$Mo, and $^{150}$Nd are evaluated. They are shown to be significant for future high-sensitivity BB experiments that may search for Majorana neutrino masses in the inverted-hierarchy mass region. The impact of solar neutrino backgrounds and their reduction are discussed for future BB experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا