Do you want to publish a course? Click here

A high-repetition rate attosecond light source for time-resolved coincidencespectroscopy

253   0   0.0 ( 0 )
 Added by Sara Mikaelsson
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Attosecond pulses, produced through high-order harmonic generation in gases, have been successfully used for observing ultrafast, sub-femtosecond electron dynamics in atoms, molecules and solid state systems. Todays typical attosecond sources, however, are often impaired by their low repetition rate and the resulting insufficient statistics, especially when the number of detectable events per shot is limited. This is the case for experiments where several reaction products must be detected in coincidence, and for surface science applications where space-charge effects compromise spectral and spatial resolution. In this work, we present an attosecond light source operating at 200 kHz, which opens up the exploration of phenomena previously inaccessible to attosecond interferometric and spectroscopic techniques. Key to our approach is the combination of a high repetition rate, few-cycle laser source, a specially designed gas target for efficient high harmonic generation, a passively and actively stabilized pump-probe interferometer and an advanced 3D photoelectron/ion momentum detector. While most experiments in the field of attosecond science so far have been performed with either single attosecond pulses or long trains of pulses, we explore the hitherto mostly overlooked intermediate regime with short trains consisting of only a few attosecond pulses.e also present the first coincidence measurement of single-photon double ionization of helium with full angular resolution, using an attosecond source. This opens up for future studies of the dynamic evolution of strongly correlated electrons.

rate research

Read More

127 - Christophe Finot 2020
We propose and numerically validate an all-optical scheme to generate optical pulse trains with varying temporal pulse-to-pulse delay and pulse duration. Applying a temporal sinusoidal phase modulation followed by a shaping of the spectral phase enables us to maintain high-quality Gaussian temporal profiles.
134 - R. Klas , A. Kirsche , M. Gebhardt 2020
High harmonic generation (HHG) enables coherent extreme-ultraviolet (XUV) radiation with ultra-short pulse duration in a table-top setup. This has already enabled a plethora of applications. Nearly all of these applications would benefit from a high photon flux to increase the signal-to-noise ratio and decrease measurement times. In addition, shortest pulses are desired to investigate fastest dynamics in fields as diverse as physics, biology, chemistry and material sciences. In this work, the up-to-date most powerful table-top XUV source with 12.9 mW in a single harmonic line at 26.5 eV is demonstrated via HHG of a frequency-doubled and post-compressed fibre laser. At the same time sub-6 fs XUV pulse duration allows accessing ultrafast dynamics with an order of magnitude higher photon flux than previously demonstrated. This concept will greatly advance and facilitate applications of XUV radiation in science and technology and enable photon-hungry ultrafast studies.
We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO3 (SRO) electrode sandwiched between a ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT) film with negative thermal expansion and a SrTiO3 substrate. SRO is rapidly heated by fs-laser pulses with 208 kHz repetition rate. Diffraction of x-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120 ps to 5 mus with a relative accuracy up to Delta c/c = 10^-6. The in-plane propagation of sound is essential for understanding the delayed out of plane expansion.
The generation of coherent light pulses in the extreme ultraviolet (XUV) spectral region with attosecond pulse durations constitutes the foundation of the field of attosecond science. Twenty years after the first demonstration of isolated attosecond pulses, they continue to be a unique tool enabling the observation and control of electron dynamics in atoms, molecules and solids. It has long been identified that an increase in the repetition rate of attosecond light sources is necessary for many applications in atomic and molecular physics, surface science, and imaging. Although high harmonic generation (HHG) at repetition rates exceeding 100 kHz, showing a continuum in the cut-off region of the XUV spectrum was already demonstrated in 2013, the number of photons per pulse was insufficient to perform pulse characterisation via attosecond streaking, let alone to perform a pump-probe experiment. Here we report on the generation and full characterisation of XUV attosecond pulses via HHG driven by near-single-cycle pulses at a repetition rate of 100 kHz. The high number of 10^6 XUV photons per pulse on target enables attosecond electron streaking experiments through which the XUV pulses are determined to consist of a dominant single attosecond pulse. These results open the door for attosecond pump-probe spectroscopy studies at a repetition rate one or two orders of magnitude above current implementations.
We develop the two-electron attosecond streak camera under realistic conditions using a quasi-classical model. We assume extreme ultra-violet (XUV) attosecond pulses with a full width at half maximum (FWHM) of 24 attoseconds, centered at 120 eV and a streaking infrared laser field of 1600 nm, and intensity of $1.8 times 10^{12}$ W/cm$^2$. The proposed method is shown to be capable to time resolve intra-atomic collisions in double ionization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا