Do you want to publish a course? Click here

Geodesic Paths for Image Segmentation with Implicit Region-based Homogeneity Enhancement

99   0   0.0 ( 0 )
 Added by Da Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Minimal paths are regarded as a powerful and efficient tool for boundary detection and image segmentation due to its global optimality and the well-established numerical solutions such as fast marching method. In this paper, we introduce a flexible interactive image segmentation model based on the Eikonal partial differential equation (PDE) framework in conjunction with region-based homogeneity enhancement. A key ingredient in the introduced model is the construction of local geodesic metrics, which are capable of integrating anisotropic and asymmetric edge features, implicit region-based homogeneity features and/or curvature regularization. The incorporation of the region-based homogeneity features into the metrics considered relies on an implicit representation of these features, which is one of the contributions of this work. Moreover, we also introduce a way to build simple closed contours as the concatenation of two disjoint open curves. Experimental results prove that the proposed model indeed outperforms state-of-the-art minimal paths-based image segmentation approaches.



rate research

Read More

Numerical computation of shortest paths or geodesics on curved domains, as well as the associated geodesic distance, arises in a broad range of applications across digital geometry processing, scientific computing, computer graphics, and computer vision. Relative to Euclidean distance computation, these tasks are complicated by the influence of curvature on the behavior of shortest paths, as well as the fact that the representation of the domain may itself be approximate. In spite of the difficulty of this problem, recent literature has developed a wide variety of sophisticated methods that enable rapid queries of geodesic information, even on relatively large models. This survey reviews the major categories of approaches to the computation of geodesic paths and distances, highlighting common themes and opportunities for future improvement.
Weakly supervised image segmentation trained with image-level labels usually suffers from inaccurate coverage of object areas during the generation of the pseudo groundtruth. This is because the object activation maps are trained with the classification objective and lack the ability to generalize. To improve the generality of the objective activation maps, we propose a region prototypical network RPNet to explore the cross-image object diversity of the training set. Similar object parts across images are identified via region feature comparison. Object confidence is propagated between regions to discover new object areas while background regions are suppressed. Experiments show that the proposed method generates more complete and accurate pseudo object masks, while achieving state-of-the-art performance on PASCAL VOC 2012 and MS COCO. In addition, we investigate the robustness of the proposed method on reduced training sets.
Until now, all single level segmentation algorithms except CNN-based ones lead to over segmentation. And CNN-based segmentation algorithms have their own problems. To avoid over segmentation, multiple thresholds of criteria are adopted in region merging process to produce hierarchical segmentation results. However, there still has extreme over segmentation in the low level of the hierarchy, and outstanding tiny objects are merged to their large adjacencies in the high level of the hierarchy. This paper proposes a region-merging-based image segmentation method that we call it Dam Burst. As a single level segmentation algorithm, this method avoids over segmentation and retains details by the same time. It is named because of that it simulates a flooding from underground destroys dams between water-pools. We treat edge detection results as strengthening structure of a dam if it is on the dam. To simulate a flooding from underground, regions are merged by ascending order of the average gra-dient inside the region.
Accurate medical image segmentation is essential for diagnosis, surgical planning and many other applications. Convolutional Neural Networks (CNNs) have become the state-of-the-art automatic segmentation methods. However, fully automatic results may still need to be refined to become accurate and robust enough for clinical use. We propose a deep learning-based interactive segmentation method to improve the results obtained by an automatic CNN and to reduce user interactions during refinement for higher accuracy. We use one CNN to obtain an initial automatic segmentation, on which user interactions are added to indicate mis-segmentations. Another CNN takes as input the user interactions with the initial segmentation and gives a refined result. We propose to combine user interactions with CNNs through geodesic distance transforms, and propose a resolution-preserving network that gives a better dense prediction. In addition, we integrate user interactions as hard constraints into a back-propagatable Conditional Random Field. We validated the proposed framework in the context of 2D placenta segmentation from fetal MRI and 3D brain tumor segmentation from FLAIR images. Experimental results show our method achieves a large improvement from automatic CNNs, and obtains comparable and even higher accuracy with fewer user interventions and less time compared with traditional interactive methods.
The Voronoi diagram-based dual-front active contour models are known as a powerful and efficient way for addressing the image segmentation and domain partitioning problems. In the basic formulation of the dual-front models, the evolving contours can be considered as the interfaces of adjacent Voronoi regions. Among these dual-front models, a crucial ingredient is regarded as the geodesic metrics by which the geodesic distances and the corresponding Voronoi diagram can be estimated. In this paper, we introduce a type of asymmetric quadratic metrics dual-front model. The metrics considered are built by the integration of the image features and a vector field derived from the evolving contours. The use of the asymmetry enhancement can reduce the risk of contour shortcut or leakage problems especially when the initial contours are far away from the target boundaries or the images have complicated intensity distributions. Moreover, the proposed dual-front model can be applied for image segmentation in conjunction with various region-based homogeneity terms. The numerical experiments on both synthetic and real images show that the proposed dual-front model indeed achieves encouraging results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا