No Arabic abstract
The Heider balance is investigated in a chain of actors, with periodic boundary conditions and the neighborhood of range $r$, with $r$ as a parameter. Two model dynamics are applied: a deterministic cellular automaton (Malarz et al, Physica D 411 (2020) 132556) and the heat-bath algorithm, with the density of unbalanced-balanced triads in the role of energy. The outcome is a spectrum of energy in stationary and blinking states and a balanced-unbalanced network transition driven by thermal noise. The critical point $T_c$ increases with the range $r$ and it does not depend on the system size.
The state of structural balance (termed also `Heider balance) of a social network is often discussed in social psychology and sociophysics. In this state, actors at network nodes classify other individuals as enemies or friends. Hence, the network contains two kinds of links: positive and negative. Here a new cellular automaton is designed and investigated, which mimics the time evolution towards the structural balance. The automaton is deterministic and synchronous. The medium is the triangular lattice with some fraction $f$ of links removed. We analyse the number of unbalanced triads (parameterized as `energy), the frequencies of balanced triads and correlations between them. The time evolution enhances the local correlations of balanced triads. Local configurations of unbalanced triads are found which are blinking with period of two time steps.
With the availability of cell phones, internet, social media etc. the interconnectedness of people within most societies has increased drastically over the past three decades. Across the same timespan, we are observing the phenomenon of increasing levels of fragmentation in society into relatively small and isolated groups that have been termed filter bubbles, or echo chambers. These pose a number of threats to open societies, in particular, a radicalisation in political, social or cultural issues, and a limited access to facts. In this paper we show that these two phenomena might be tightly related. We study a simple stochastic co-evolutionary model of a society of interacting people. People are not only able to update their opinions within their social context, but can also update their social links from collaborative to hostile, and vice versa. The latter is implemented such that social balance is realised. We find that there exists a critical level of interconnectedness, above which society fragments into small sub-communities that are positively linked within and hostile towards other groups. We argue that the existence of a critical communication density is a universal phenomenon in all societies that exhibit social balance. The necessity arises from the underlying mathematical structure of a phase transition phenomenon that is known from the theory of a kind of disordered magnets called spin glasses. We discuss the consequences of this phase transition for social fragmentation in society.
In a recent work [R. Shojaei et al, Physical Review E 100, 022303 (2019)] the Authors calculate numerically the critical temperature $T_c$ of the balanced-imbalanced phase transition in a fully connected graph. According to their findings, $T_c$ decreases with the number of nodes $N$. Here we calculate the same critical temperature using the heat-bath algorithm. We show that $T_c$ increases with $N$ as $N^{gamma}$, with $gamma$ close to 0.5 or 1.0. This value depends on the initial fraction of positive bonds.
We revisit the issue of whether thermal fluctuations are relevant for incompressible fluid turbulence, and estimate the scale at which they become important. As anticipated by Betchov in a prescient series of works more than six decades ago, this scale is about equal to the Kolmogorov length, even though that is several orders of magnitude above the mean free path. This result implies that the deterministic version of the incompressible Navier-Stokes equation is inadequate to describe the dissipation range of turbulence in molecular fluids. Within this range, the fluctuating hydrodynamics equation of Landau and Lifschitz is more appropriate. In particular, our analysis implies that both the exponentially decaying energy spectrum and the far-dissipation range intermittency predicted by Kraichnan for deterministic Navier-Stokes will be generally replaced by Gaussian thermal equipartition at scales just below the Kolmogorov length. Stochastic shell model simulations at high Reynolds numbers verify our theoretical predictions and reveal furthermore that inertial-range intermittency can propagate deep into the dissipation range, leading to large fluctuations in the equipartition length scale. We explain the failure of previous scaling arguments for the validity of deterministic Navier-Stokes equations at any Reynolds number and we provide a mathematical interpretation and physical justification of the fluctuating Navier-Stokes equation as an ``effective field-theory valid below some high-wavenumber cutoff $Lambda$, rather than as a continuum stochastic partial differential equation. At Reynolds number around a million the strongest turbulent excitations observed in our simulation penetrate down to a length-scale of microns. However, for longer observation times or higher Reynolds numbers, more extreme turbulent events could lead to a local breakdown of fluctuating hydrodynamics.
Planar, double-torsional oscillators are especially suitable for short-range macroscopic force search experiments, since they can be operated at the limit of instrumental thermal noise. As a study of this limit, we report a measurement of the noise kinetic energy of a polycrystalline tungsten oscillator in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonance frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The electronic processing is calibrated by means of a known electrostatic force and input from a finite element model. The measured average kinetic energy is in agreement with the expected value of 1/2 kT.