Do you want to publish a course? Click here

Dissipation-Range Fluid Turbulence and Thermal Noise

201   0   0.0 ( 0 )
 Added by Dmytro Bandak
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit the issue of whether thermal fluctuations are relevant for incompressible fluid turbulence, and estimate the scale at which they become important. As anticipated by Betchov in a prescient series of works more than six decades ago, this scale is about equal to the Kolmogorov length, even though that is several orders of magnitude above the mean free path. This result implies that the deterministic version of the incompressible Navier-Stokes equation is inadequate to describe the dissipation range of turbulence in molecular fluids. Within this range, the fluctuating hydrodynamics equation of Landau and Lifschitz is more appropriate. In particular, our analysis implies that both the exponentially decaying energy spectrum and the far-dissipation range intermittency predicted by Kraichnan for deterministic Navier-Stokes will be generally replaced by Gaussian thermal equipartition at scales just below the Kolmogorov length. Stochastic shell model simulations at high Reynolds numbers verify our theoretical predictions and reveal furthermore that inertial-range intermittency can propagate deep into the dissipation range, leading to large fluctuations in the equipartition length scale. We explain the failure of previous scaling arguments for the validity of deterministic Navier-Stokes equations at any Reynolds number and we provide a mathematical interpretation and physical justification of the fluctuating Navier-Stokes equation as an ``effective field-theory valid below some high-wavenumber cutoff $Lambda$, rather than as a continuum stochastic partial differential equation. At Reynolds number around a million the strongest turbulent excitations observed in our simulation penetrate down to a length-scale of microns. However, for longer observation times or higher Reynolds numbers, more extreme turbulent events could lead to a local breakdown of fluctuating hydrodynamics.



rate research

Read More

We use direct numerical simulations to investigate the interaction between the temperature field of a fluid and the temperature of small particles suspended in the flow, employing both one and two-way thermal coupling, in a statistically stationary, isotropic turbulent flow. Using statistical analysis, we investigate this variegated interaction at the different scales of the flow. We find that the variance of the fluid temperature gradients decreases as the thermal response time of the suspended particles is increased. The probability density function (PDF) of the fluid temperature gradients scales with its variance, while the PDF of the rate of change of the particle temperature, whose variance is associated with the thermal dissipation due to the particles, does not scale in such a self-similar way. The modification of the fluid temperature field due to the particles is examined by computing the particle concentration and particle heat fluxes conditioned on the magnitude of the local fluid temperature gradient. These statistics highlight that the particles cluster on the fluid temperature fronts, and the important role played by the alignments of the particle velocity and the local fluid temperature gradient. The temperature structure functions, which characterize the temperature fluctuations across the scales of the flow, clearly show that the fluctuations of the fluid temperature increments are monotonically suppressed in the two-way coupled regime as the particle thermal response time is increased. Thermal caustics dominate the particle temperature increments at small scales, that is, particles that come into contact are likely to have very large differences in their temperature. This is caused by the nonlocal thermal dynamics of the particles...
Recent experiments and simulations have shown that unsteady turbulent flows, before reaching a dynamic equilibrium state, display a universal behaviour. We show that the observed universal non-equilibrium scaling can be explained using a non-equilibrium correction of Kolmogorovs energy spectrum. Given the universality of the experimental and numerical observations, the ideas presented here lay the foundation for the modeling of a wide class of unsteady turbulent flows.
We revisit the issue of Lagrangian irreversibility in the context of recent results [Xu, et al., PNAS, 111, 7558 (2014)] on flight-crash events in turbulent flows and show how extreme events in the Eulerian dissipation statistics are related to the statistics of power-fluctuations for tracer trajectories. Surprisingly, we find that particle trajectories in intense dissipation zones are dominated by energy gains sharper than energy losses, contrary to flight-crashes, through a pressure-gradient driven take-off phenomenon. Our conclusions are rationalised by analysing data from simulations of three-dimensional intermittent turbulence, as well as from non-intermittent decimated flows. Lagrangian irreversibility is found to persist even in the latter case, wherein fluctuations of the dissipation rate are shown to be relatively mild and to follow probability distribution functions with exponential tails.
A systematic study of the influence of the viscous effect on both the spectra and the nonlinear fluxes of conserved as well as non conserved quantities in Navier-Stokes turbulence is proposed. This analysis is used to estimate the helicity dissipation scale which is shown to coincide with the energy dissipation scale. However, it is shown using the decomposition of helicity into eigen modes of the curl operator, that viscous effects have to be taken into account for wave vector smaller than the Kolomogorov wave number in the evolution of these eigen components of the helicity.
132 - Prasad Perlekar 2010
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter $Lambda$ to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier--Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with an exponent $theta=2.9pm0.2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا