No Arabic abstract
We present guidelines to estimate the effect of electrostatic repulsion in sedimenting dilute particle suspensions. Our results are based on combined Langevin dynamics and lattice Boltzmann simulations for a range of particle radii, Debye lengths and particle concentrations. They show a simple relationship between the slope $K$ of the sedimentation velocity over the concentration versus the range $chi$ of the electrostatic repulsion normalized by the average particle-particle distance. When $chi to 0$, the particles are too far away from each other to interact electrostatically and $K=6.55$ as predicted by the theory of Batchelor. As $chi$ increases, $K$ likewise increases up to a maximum around $chi=0.5$ and then decreases again to a concentration-dependent constant over the range $chi=0.5-1$, while the particles transition from a disordered gas-like distribution to a liquid-like state with a narrow distribution of the interparticle spacing.
Janus phoretic colloids (JPs) self-propel as a result of self-generated chemical gradients and exhibit spontaneous nontrivial dynamics within phoretic suspensions, on length scales much larger than the microscopic swimmer size. Such collective dynamics arise from the competition of (i) the self-propulsion velocity of the particles, (ii) the attractive/repulsive chemically-mediated interactions between particles and (iii) the flow disturbance they introduce in the surrounding medium. These three ingredients are directly determined by the shape and physico-chemical properties of the colloids surface. Owing to such link, we adapt a recent and popular kinetic model for dilute suspensions of chemically-active JPs where the particles far-field hydrodynamic and chemical signatures are intrinsically linked and explicitly determined by the design properties. Using linear stability analysis, we show that self-propulsion can induce a wave-selective mechanism for certain particles configurations consistent with experimental observations. Numerical simulations of the complete kinetic model are further performed to analyze the relative importance of chemical and hydrodynamic interactions in the nonlinear dynamics. Our results show that regular patterns in the particle density are promoted by chemical signaling but prevented by the strong fluid flows generated collectively by the polarized particles, regardless of their chemotactic or antichemotactic nature (i.e. for both puller and pusher swimmers).
We investigate the development of mobility inversion and fingering when a granular suspension is injected radially between horizontal parallel plates of a cell filled with a miscible fluid. While the suspension spreads uniformly when the suspension and the displaced fluid densities are exactly matched, even a small density difference is found to result in a dense granular front which develops fingers with angular spacing that increase with granular volume fraction and decrease with injection rate. We show that the time scale over which the instability develops is given by the volume fraction dependent settling time scale of the grains in the cell. We then show that the mobility inversion and the non-equilibrium Korteweg surface tension due to granular volume fraction gradients determine the number of fingers at the onset of the instability in these miscible suspensions.
Hydrodynamic interactions between two identical elastic dumbbells settling under gravity in a viscous fluid at low-Reynolds-number are investigated within the point-particle model. Evolution of a benchmark initial configuration is studied, in which the dumbbells are vertical and their centres are aligned horizontally. Rigid dumbbells and pairs of separate beads starting from the same positions tumble periodically while settling down. We find that elasticity (which breaks time-reversal symmetry of the motion) significantly affects the systems dynamics. This is remarkable taking into account that elastic forces are always much smaller than gravity. We observe oscillating motion of the elastic dumbbells, which tumble and change their length non-periodically. Independently of the value of the spring constant, a horizontal hydrodynamic repulsion appears between the dumbbells - their centres of mass move apart from each other horizontally. The shift is fast for moderate values of the spring constant k, and slows down when k tends to zero or to infinity; in these limiting cases we recover the periodic dynamics reported in the literature. For moderate values of the spring constant, and different initial configurations, we observe the existence of a universal time-dependent solution to which the system converges after an initial relaxation phase. The tumbling time and the width of the trajectories in the centre-of-mass frame increase with time. In addition to its fundamental significance, the benchmark solution presented here is important to understand general features of systems with larger number of elastic particles, at regular and random configurations.
Hydrodynamic interactions (HIs) are important in biophysics research because they influence both the collective and the individual behaviour of microorganisms and self-propelled particles. For instance, HIs at the micro-swimmer level determine the attraction or repulsion between individuals, and hence their collective behaviour. Meanwhile, HIs between swimming appendages (e.g. cilia and flagella) influence the emergence of swimming gaits, synchronised bundles and metachronal waves. In this study, we address the issue of HIs between slender filaments separated by a distance larger than their contour length (d>L) by means of asymptotic calculations and numerical simulations. We first derive analytical expressions for the extended resistance matrix of two arbitrarily-shaped rigid filaments as a series expansion in inverse powers of d/L>1. The coefficients in our asymptotic series expansion are then evaluated using two well-established methods for slender filaments, resistive-force theory (RFT) and slender-body theory (SBT), and our asymptotic theory is verified using numerical simulations based on SBT for the case of two parallel helices. The theory captures the qualitative features of the interactions in the regime d/L>1, which opens the path to a deeper physical understanding of hydrodynamically governed phenomena such as inter-filament synchronisation and multiflagellar propulsion. To demonstrate the usefulness of our results, we next apply our theory to the case of two helices rotating side-by-side, where we quantify the dependence of all forces and torques on the distance and phase difference between them. Using our understanding of pairwise HIs, we then provide physical intuition for the case of a circular array of rotating helices. Our theoretical results will be useful for the study of HIs between bacterial flagella, nodal cilia, and slender microswimmers.
Phoretic particles self-propel using self-generated physico-chemical gradients at their surface. Within a suspension, they interact hydrodynamically by setting the fluid around them into motion, and chemically by modifying the chemical background seen by their neighbours. While most phoretic systems evolve in confined environments due to buoyancy effects, most models focus on their interactions in unbounded flows. Here, we propose a first model for the interaction of phoretic particles in Hele-Shaw confinement and show that in this limit, hydrodynamic and phoretic interactions share not only the same scaling but also the same form, albeit in opposite directions. In essence, we show that phoretic interactions effectively reverse the sign of the interactions that would be obtained for swimmers interacting purely hydrodynamically. Yet, hydrodynamic interactions can not be neglected as they significantly impact the magnitude of the interactions. This model is then used to analyse the behaviour of a suspension. The suspension exhibits swirling and clustering collective modes dictated by the orientational interactions between particles, similar to hydrodynamic swimmers, but here governed by the surface properties of the phoretic particle; the reversal in the sign of the interaction tends to slow down the swimming motion of the particles.