Do you want to publish a course? Click here

Hydro-chemical interactions in dilute phoretic suspensions: from individual particle properties to collective organization

456   0   0.0 ( 0 )
 Added by Sebastien Michelin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Janus phoretic colloids (JPs) self-propel as a result of self-generated chemical gradients and exhibit spontaneous nontrivial dynamics within phoretic suspensions, on length scales much larger than the microscopic swimmer size. Such collective dynamics arise from the competition of (i) the self-propulsion velocity of the particles, (ii) the attractive/repulsive chemically-mediated interactions between particles and (iii) the flow disturbance they introduce in the surrounding medium. These three ingredients are directly determined by the shape and physico-chemical properties of the colloids surface. Owing to such link, we adapt a recent and popular kinetic model for dilute suspensions of chemically-active JPs where the particles far-field hydrodynamic and chemical signatures are intrinsically linked and explicitly determined by the design properties. Using linear stability analysis, we show that self-propulsion can induce a wave-selective mechanism for certain particles configurations consistent with experimental observations. Numerical simulations of the complete kinetic model are further performed to analyze the relative importance of chemical and hydrodynamic interactions in the nonlinear dynamics. Our results show that regular patterns in the particle density are promoted by chemical signaling but prevented by the strong fluid flows generated collectively by the polarized particles, regardless of their chemotactic or antichemotactic nature (i.e. for both puller and pusher swimmers).



rate research

Read More

We present guidelines to estimate the effect of electrostatic repulsion in sedimenting dilute particle suspensions. Our results are based on combined Langevin dynamics and lattice Boltzmann simulations for a range of particle radii, Debye lengths and particle concentrations. They show a simple relationship between the slope $K$ of the sedimentation velocity over the concentration versus the range $chi$ of the electrostatic repulsion normalized by the average particle-particle distance. When $chi to 0$, the particles are too far away from each other to interact electrostatically and $K=6.55$ as predicted by the theory of Batchelor. As $chi$ increases, $K$ likewise increases up to a maximum around $chi=0.5$ and then decreases again to a concentration-dependent constant over the range $chi=0.5-1$, while the particles transition from a disordered gas-like distribution to a liquid-like state with a narrow distribution of the interparticle spacing.
Phoretic particles self-propel using self-generated physico-chemical gradients at their surface. Within a suspension, they interact hydrodynamically by setting the fluid around them into motion, and chemically by modifying the chemical background seen by their neighbours. While most phoretic systems evolve in confined environments due to buoyancy effects, most models focus on their interactions in unbounded flows. Here, we propose a first model for the interaction of phoretic particles in Hele-Shaw confinement and show that in this limit, hydrodynamic and phoretic interactions share not only the same scaling but also the same form, albeit in opposite directions. In essence, we show that phoretic interactions effectively reverse the sign of the interactions that would be obtained for swimmers interacting purely hydrodynamically. Yet, hydrodynamic interactions can not be neglected as they significantly impact the magnitude of the interactions. This model is then used to analyse the behaviour of a suspension. The suspension exhibits swirling and clustering collective modes dictated by the orientational interactions between particles, similar to hydrodynamic swimmers, but here governed by the surface properties of the phoretic particle; the reversal in the sign of the interaction tends to slow down the swimming motion of the particles.
Phoretic particles exploit local self-generated physico-chemical gradients to achieve self-propulsion at the micron scale. The collective dynamics of a large number of such particles is currently the focus of intense research efforts, both from a physical perspective to understand the precise mechanisms of the interactions and their respective roles, as well as from an experimental point of view to explain the observations of complex dynamics as well as formation of coherent large-scale structures. However, an exact modelling of such multi-particle problems is difficult and most efforts so far rely on the superposition of far-field approximations for each particles signature, which are only valid asymptotically in the dilute suspension limit. A systematic and unified analytical framework based on the classical Method of Reflections (MoR) is developed here for both Laplace and Stokes problems to obtain the higher-order interactions and the resulting velocities of multiple phoretic particles, up to any order of accuracy in the radius-to-distance ratio $varepsilon$ of the particles. Beyond simple pairwise chemical or hydrodynamic interactions, this model allows us to account for the generic chemo-hydrodynamic couplings as well as $N$-particle interactions ($Ngeq 3$). The $varepsilon^5$-accurate interaction velocities are then explicitly obtained and the resulting implementation of this MoR model is discussed and validated quantitatively against exact solutions of a few canonical problems.
When suspended particles are pushed by liquid flow through a constricted channel they might either pass the bottleneck without trouble or encounter a permanent clog that will stop them forever. However, they may also flow intermittently with great sensitivity to the neck-to-particle size ratio D/d. In this work, we experimentally explore the limits of the intermittent regime for a dense suspension through a single bottleneck as a function of this parameter. To this end, we make use of high time- and space-resolution experiments to obtain the distributions of arrest times T between successive bursts, which display power-law tails with characteristic exponents. These exponents compare well with the ones found for as disparate situations as the evacuation of pedestrians from a room, the entry of a flock of sheep into a shed or the discharge of particles from a silo. Nevertheless, the intrinsic properties of our system i.e. channel geometry, driving and interaction forces, particle size distribution seem to introduce a sharp transition from a clogged state to a continuous flow, where clogs do not develop at all. This contrasts with the results obtained in other systems where intermittent flow, with power-law exponents above two, were obtained.
Phoretic mechanisms, whereby gradients of chemical solutes induce surface-driven flows, have recently been used to generate directed propulsion of patterned colloidal particles. When the chemical solutes diffuse slowly, an instability further provides active but isotropic particles with a route to self-propulsion by spontaneously breaking the symmetry of the solute distribution. Here we show theoretically that, in a mechanism analogous to Benard-Marangoni convection, phoretic phenomena can create spontaneous and self-sustained wall-driven mixing flows within a straight, chemically-uniform active channel. Such spontaneous flows do not result in any net pumping for a uniform channel but greatly modify the distribution of transport of the chemical solute. The instability is predicted to occur for a solute Peclet number above a critical value and for a band of finite perturbation wavenumbers. We solve the perturbation problem analytically to characterize the instability, and use both steady and unsteady numerical computations of the full nonlinear transport problem to capture the long-time coupled dynamics of the solute and flow within the channel.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا