No Arabic abstract
Hydrodynamic interactions (HIs) are important in biophysics research because they influence both the collective and the individual behaviour of microorganisms and self-propelled particles. For instance, HIs at the micro-swimmer level determine the attraction or repulsion between individuals, and hence their collective behaviour. Meanwhile, HIs between swimming appendages (e.g. cilia and flagella) influence the emergence of swimming gaits, synchronised bundles and metachronal waves. In this study, we address the issue of HIs between slender filaments separated by a distance larger than their contour length (d>L) by means of asymptotic calculations and numerical simulations. We first derive analytical expressions for the extended resistance matrix of two arbitrarily-shaped rigid filaments as a series expansion in inverse powers of d/L>1. The coefficients in our asymptotic series expansion are then evaluated using two well-established methods for slender filaments, resistive-force theory (RFT) and slender-body theory (SBT), and our asymptotic theory is verified using numerical simulations based on SBT for the case of two parallel helices. The theory captures the qualitative features of the interactions in the regime d/L>1, which opens the path to a deeper physical understanding of hydrodynamically governed phenomena such as inter-filament synchronisation and multiflagellar propulsion. To demonstrate the usefulness of our results, we next apply our theory to the case of two helices rotating side-by-side, where we quantify the dependence of all forces and torques on the distance and phase difference between them. Using our understanding of pairwise HIs, we then provide physical intuition for the case of a circular array of rotating helices. Our theoretical results will be useful for the study of HIs between bacterial flagella, nodal cilia, and slender microswimmers.
The low-Reynolds number hydrodynamics of slender ribbons is accurately captured by slender-ribbon theory, an asymptotic solution to the Stokes equation which assumes that the three length scales characterising the ribbons are well separated. We show in this paper that the force distribution across the width of an isolated ribbon located in a infinite fluid can be determined analytically, irrespective of the ribbons shape. This, in turn, reduces the surface integrals in the slender-ribbon theory equations to a line integral analogous to the one arising in slender-body theory to determine the dynamics of filaments. This result is then used to derive analytical solutions to the motion of a rigid plate ellipsoid and a ribbon torus and to propose a ribbon resistive-force theory, thereby extending the resistive-force theory for slender filaments.
Phoretic particles self-propel using self-generated physico-chemical gradients at their surface. Within a suspension, they interact hydrodynamically by setting the fluid around them into motion, and chemically by modifying the chemical background seen by their neighbours. While most phoretic systems evolve in confined environments due to buoyancy effects, most models focus on their interactions in unbounded flows. Here, we propose a first model for the interaction of phoretic particles in Hele-Shaw confinement and show that in this limit, hydrodynamic and phoretic interactions share not only the same scaling but also the same form, albeit in opposite directions. In essence, we show that phoretic interactions effectively reverse the sign of the interactions that would be obtained for swimmers interacting purely hydrodynamically. Yet, hydrodynamic interactions can not be neglected as they significantly impact the magnitude of the interactions. This model is then used to analyse the behaviour of a suspension. The suspension exhibits swirling and clustering collective modes dictated by the orientational interactions between particles, similar to hydrodynamic swimmers, but here governed by the surface properties of the phoretic particle; the reversal in the sign of the interaction tends to slow down the swimming motion of the particles.
Phoretic particles exploit local self-generated physico-chemical gradients to achieve self-propulsion at the micron scale. The collective dynamics of a large number of such particles is currently the focus of intense research efforts, both from a physical perspective to understand the precise mechanisms of the interactions and their respective roles, as well as from an experimental point of view to explain the observations of complex dynamics as well as formation of coherent large-scale structures. However, an exact modelling of such multi-particle problems is difficult and most efforts so far rely on the superposition of far-field approximations for each particles signature, which are only valid asymptotically in the dilute suspension limit. A systematic and unified analytical framework based on the classical Method of Reflections (MoR) is developed here for both Laplace and Stokes problems to obtain the higher-order interactions and the resulting velocities of multiple phoretic particles, up to any order of accuracy in the radius-to-distance ratio $varepsilon$ of the particles. Beyond simple pairwise chemical or hydrodynamic interactions, this model allows us to account for the generic chemo-hydrodynamic couplings as well as $N$-particle interactions ($Ngeq 3$). The $varepsilon^5$-accurate interaction velocities are then explicitly obtained and the resulting implementation of this MoR model is discussed and validated quantitatively against exact solutions of a few canonical problems.
Slender-body approximations have been successfully used to explain many phenomena in low-Reynolds number fluid mechanics. These approximations typically use a line of singularity solutions to represent the flow. These singularities can be difficult to implement numerically because they diverge at their origin. Hence people have regularized these singularities to overcome this issue. This regularization blurs the force over a small blob therefore removing the divergent behaviour. However it is unclear how best to regularize the singularities to minimize errors. In this paper we investigate if a line of regularized Stokeslets can describe the flow around a slender body. This is achieved by comparing the asymptotic behaviour of the flow from the line of regularized Stokeslets with the results from slender-body theory. We find that the flow far from the body can be captured if the regularization parameter is proportional to the radius of the slender body. This is consistent with what is assumed in numerical simulations and provides a choice for the proportionality constant. However more stringent requirements must be placed on the regularization blob to capture the near field flow outside a slender body. This inability to replicate the local behaviour indicates that many regularizations cannot satisfy the non-slip boundary conditions on the bodies surface to leading order, with one of the most commonly used regularizations showing an angular dependency of velocity along any cross section. This problem can be overcome with compactly supported blobs { and we construct one such example blob which could be effectively used to simulate the flow around a slender body
The viscous drag on a slender rod by a wall is important to many biological and industrial systems. This drag critically depends on the separation between the rod and the wall and can be approximated asymptotically in specific regimes, namely far from, or very close to, the wall, but is typically determined numerically for general separations. In this note we determine an asymptotic representation of the local drag for a slender rod parallel to a wall which is valid for all separations. This is possible through matching the behaviour of a rod close to the wall and a rod far from the wall. We show that the leading order drag in both these regimes has been known since 1981 and that they can used to produce a composite representation of the drag which is valid for all separations. This is in contrast to a sphere above a wall, where no simple uniformly valid representation exists. We estimate the error on this composite representation as the separation increases, discuss how the results could be used as resistive-force theory and demonstrate their use on a two-hinged swimmer above a wall.