No Arabic abstract
Among Judea Pearls many contributions to Causality and Statistics, the graphical d-separation} criterion, the do-calculus and the mediation formula stand out. In this chapter we show that d-separation} provides direct insight into an earlier causal model originally described in terms of potential outcomes and event trees. In turn, the resulting synthesis leads to a simplification of the do-calculus that clarifies and separates the underlying concepts, and a simple counterfactual formulation of a complete identification algorithm in causal models with hidden variables.
Graphical models express conditional independence relationships among variables. Although methods for vector-valued data are well established, functional data graphical models remain underdeveloped. We introduce a notion of conditional independence between random functions, and construct a framework for Bayesian inference of undirected, decomposable graphs in the multivariate functional data context. This framework is based on extending Markov distributions and hyper Markov laws from random variables to random processes, providing a principled alternative to naive application of multivariate methods to discretized functional data. Markov properties facilitate the composition of likelihoods and priors according to the decomposition of a graph. Our focus is on Gaussian process graphical models using orthogonal basis expansions. We propose a hyper-inverse-Wishart-process prior for the covariance kernels of the infinite coefficient sequences of the basis expansion, establish existence, uniqueness, strong hyper Markov property, and conjugacy. Stochastic search Markov chain Monte Carlo algorithms are developed for posterior inference, assessed through simulations, and applied to a study of brain activity and alcoholism.
Modern RNA sequencing technologies provide gene expression measurements from single cells that promise refined insights on regulatory relationships among genes. Directed graphical models are well-suited to explore such (cause-effect) relationships. However, statistical analyses of single cell data are complicated by the fact that the data often show zero-inflated expression patterns. To address this challenge, we propose directed graphical models that are based on Hurdle conditional distributions parametrized in terms of polynomials in parent variables and their 0/1 indicators of being zero or nonzero. While directed graphs for Gaussian models are only identifiable up to an equivalence class in general, we show that, under a natural and weak assumption, the exact directed acyclic graph of our zero-inflated models can be identified. We propose methods for graph recovery, apply our model to real single-cell RNA-seq data on T helper cells, and show simulated experiments that validate the identifiability and graph estimation methods in practice.
A probabilistic model describes a system in its observational state. In many situations, however, we are interested in the systems response under interventions. The class of structural causal models provides a language that allows us to model the behaviour under interventions. It can been taken as a starting point to answer a plethora of causal questions, including the identification of causal effects or causal structure learning. In this chapter, we provide a natural and straight-forward extension of this concept to dynamical systems, focusing on continuous time models. In particular, we introduce two types of causal kinetic models that differ in how the randomness enters into the model: it may either be considered as observational noise or as systematic driving noise. In both cases, we define interventions and therefore provide a possible starting point for causal inference. In this sense, the book chapter provides more questions than answers. The focus of the proposed causal kinetic models lies on the dynamics themselves rather than corresponding stationary distributions, for example. We believe that this is beneficial when the aim is to model the full time evolution of the system and data are measured at different time points. Under this focus, it is natural to consider interventions in the differential equations themselves.
We consider modeling, inference, and computation for analyzing multivariate binary data. We propose a new model that consists of a low dimensional latent variable component and a sparse graphical component. Our study is motivated by analysis of item response data in cognitive assessment and has applications to many disciplines where item response data are collected. Standard approaches to item response data in cognitive assessment adopt the multidimensional item response theory (IRT) models. However, human cognition is typically a complicated process and thus may not be adequately described by just a few factors. Consequently, a low-dimensional latent factor model, such as the multidimensional IRT models, is often insufficient to capture the structure of the data. The proposed model adds a sparse graphical component that captures the remaining ad hoc dependence. It reduces to a multidimensional IRT model when the graphical component becomes degenerate. Model selection and parameter estimation are carried out simultaneously through construction of a pseudo-likelihood function and properly chosen penalty terms. The convexity of the pseudo-likelihood function allows us to develop an efficient algorithm, while the penalty terms generate a low-dimensional latent component and a sparse graphical structure. Desirable theoretical properties are established under suitable regularity conditions. The method is applied to the revised Eysencks personality questionnaire, revealing its usefulness in item analysis. Simulation results are reported that show the new method works well in practical situations.
Our goal is to estimate causal interactions in multivariate time series. Using vector autoregressive (VAR) models, these can be defined based on non-vanishing coefficients belonging to respective time-lagged instances. As in most cases a parsimonious causality structure is assumed, a promising approach to causal discovery consists in fitting VAR models with an additional sparsity-promoting regularization. Along this line we here propose that sparsity should be enforced for the subgroups of coefficients that belong to each pair of time series, as the absence of a causal relation requires the coefficients for all time-lags to become jointly zero. Such behavior can be achieved by means of l1-l2-norm regularized regression, for which an efficient active set solver has been proposed recently. Our method is shown to outperform standard methods in recovering simulated causality graphs. The results are on par with a second novel approach which uses multiple statistical testing.