No Arabic abstract
Quality by design in pharmaceutical manufacturing hinges on computational methods and tools that are capable of accurate quantitative prediction of the design space. This paper investigates Bayesian approaches to design space characterization, which determine a feasibility probability that can be used as a measure of reliability and risk by the practitioner. An adaptation of nested sampling---a Monte Carlo technique introduced to compute Bayesian evidence---is presented. The nested sampling algorithm maintains a given set of live points through regions with increasing probability feasibility until reaching a desired reliability level. It furthermore leverages efficient strategies from Bayesian statistics for generating replacement proposals during the search. Features and advantages of this algorithm are demonstrated by means of a simple numerical example and two industrial case studies. It is shown that nested sampling can outperform conventional Monte Carlo sampling and be competitive with flexibility-based optimization techniques in low-dimensional design space problems. Practical aspects of exploiting the sampled design space to reconstruct a feasibility probability map using machine learning techniques are also discussed and illustrated. Finally, the effectiveness of nested sampling is demonstrated on a higher-dimensional problem, in the presence of a complex dynamic model and significant model uncertainty.
Imaging methods often rely on Bayesian statistical inference strategies to solve difficult imaging problems. Applying Bayesian methodology to imaging requires the specification of a likelihood function and a prior distribution, which define the Bayesian statistical model from which the posterior distribution of the image is derived. Specifying a suitable model for a specific application can be very challenging, particularly when there is no reliable ground truth data available. Bayesian model selection provides a framework for selecting the most appropriate model directly from the observed data, without reference to ground truth data. However, Bayesian model selection requires the computation of the marginal likelihood (Bayesian evidence), which is computationally challenging, prohibiting its use in high-dimensional imaging problems. In this work we present the proximal nested sampling methodology to objectively compare alternative Bayesian imaging models, without reference to ground truth data. The methodology is based on nested sampling, a Monte Carlo approach specialised for model comparison, and exploits proximal Markov chain Monte Carlo techniques to scale efficiently to large problems and to tackle models that are log-concave and not necessarily smooth (e.g., involving L1 or total-variation priors). The proposed approach can be applied computationally to problems of dimension O(10^6) and beyond, making it suitable for high-dimensional inverse imaging problems. It is validated on large Gaussian models, for which the likelihood is available analytically, and subsequently illustrated on a range of imaging problems where it is used to analyse different choices for the sparsifying dictionary and measurement model.
An innovative strategy for the optimal design of planar frames able to resist to seismic excitations is here proposed. The procedure is based on genetic algorithms (GA) which are performed according to a nested structure suitable to be implemented in parallel computing on several devices. In particular, this solution foresees two nested genetic algorithms. The first one, named External GA, seeks, among a predefined list of profiles, the size of the structural elements of the frame which correspond to the most performing solution associated to the highest value of an appropriate fitness function. The latter function takes into account, among other considerations, of the seismic safety factor and the failure mode which are calculated by means of the second algorithm, named Internal GA. The details of the proposed procedure are provided and applications to the seismic design of two frames of different size are described.
We propose an optimization approach to design cost-effective electrical power transmission networks. That is, we aim to select both the network structure and the line conductances (line sizes) so as to optimize the trade-off between network efficiency (low power dissipation within the transmission network) and the cost to build the network. We begin with a convex optimization method based on the paper ``Minimizing Effective Resistance of a Graph [Ghosh, Boyd & Saberi]. We show that this (DC) resistive network method can be adapted to the context of AC power flow. However, that does not address the combinatorial aspect of selecting network structure. We approach this problem as selecting a subgraph within an over-complete network, posed as minimizing the (convex) network power dissipation plus a non-convex cost on line conductances that encourages sparse networks where many line conductances are set to zero. We develop a heuristic approach to solve this non-convex optimization problem using: (1) a continuation method to interpolate from the smooth, convex problem to the (non-smooth, non-convex) combinatorial problem, (2) the majorization-minimization algorithm to perform the necessary intermediate smooth but non-convex optimization steps. Ultimately, this involves solving a sequence of convex optimization problems in which we iteratively reweight a linear cost on line conductances to fit the actual non-convex cost. Several examples are presented which suggest that the overall method is a good heuristic for network design. We also consider how to obtain sparse networks that are still robust against failures of lines and/or generators.
Accurate estimation of parameters is paramount in developing high-fidelity models for complex dynamical systems. Model-based optimal experiment design (OED) approaches enable systematic design of dynamic experiments to generate input-output data sets with high information content for parameter estimation. Standard OED approaches however face two challenges: (i) experiment design under incomplete system information due to unknown true parameters, which usually requires many iterations of OED; (ii) incapability of systematically accounting for the inherent uncertainties of complex systems, which can lead to diminished effectiveness of the designed optimal excitation signal as well as violation of system constraints. This paper presents a robust OED approach for nonlinear systems with arbitrarily-shaped time-invariant probabilistic uncertainties. Polynomial chaos is used for efficient uncertainty propagation. The distinct feature of the robust OED approach is the inclusion of chance constraints to ensure constraint satisfaction in a stochastic setting. The presented approach is demonstrated by optimal experimental design for the JAK-STAT5 signaling pathway that regulates various cellular processes in a biological cell.
A novel probabilistic sparsity-promoting method for robust near-field (NF) antenna characterization is proposed. It leverages on the measurements-by-design (MebD) paradigm and it exploits some a-priori information on the antenna under test (AUT) to generate an over-complete representation basis. Accordingly, the problem at hand is reformulated in a compressive sensing (CS) framework as the retrieval of a maximally-sparse distribution (with respect to the overcomplete basis) from a reduced set of measured data and then it is solved by means of a Bayesian strategy. Representative numerical results are presented to, also comparatively, assess the effectiveness of the proposed approach in reducing the burden/cost of the acquisition process as well as to mitigate (possible) truncation errors when dealing with space-constrained probing systems.