Do you want to publish a course? Click here

A Probabilistic Approach to Robust Optimal Experiment Design with Chance Constraints

187   0   0.0 ( 0 )
 Added by Ali Mesbah
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Accurate estimation of parameters is paramount in developing high-fidelity models for complex dynamical systems. Model-based optimal experiment design (OED) approaches enable systematic design of dynamic experiments to generate input-output data sets with high information content for parameter estimation. Standard OED approaches however face two challenges: (i) experiment design under incomplete system information due to unknown true parameters, which usually requires many iterations of OED; (ii) incapability of systematically accounting for the inherent uncertainties of complex systems, which can lead to diminished effectiveness of the designed optimal excitation signal as well as violation of system constraints. This paper presents a robust OED approach for nonlinear systems with arbitrarily-shaped time-invariant probabilistic uncertainties. Polynomial chaos is used for efficient uncertainty propagation. The distinct feature of the robust OED approach is the inclusion of chance constraints to ensure constraint satisfaction in a stochastic setting. The presented approach is demonstrated by optimal experimental design for the JAK-STAT5 signaling pathway that regulates various cellular processes in a biological cell.



rate research

Read More

Flexible loads, e.g. thermostatically controlled loads (TCLs), are technically feasible to participate in demand response (DR) programs. On the other hand, there is a number of challenges that need to be resolved before it can be implemented in practice en masse. First, individual TCLs must be aggregated and operated in sync to scale DR benefits. Second, the uncertainty of TCLs needs to be accounted for. Third, exercising the flexibility of TCLs needs to be coordinated with distribution system operations to avoid unnecessary power losses and compliance with power flow and voltage limits. This paper addresses these challenges. We propose a network-constrained, open-loop, stochastic optimal control formulation. The first part of this formulation represents ensembles of collocated TCLs modelled by an aggregated Markov Process (MP), where each MP state is associated with a given power consumption or production level. The second part extends MPs to a multi-period distribution power flow optimization. In this optimization, the control of TCL ensembles is regulated by transition probability matrices and physically enabled by local active and reactive power controls at TCL locations. The optimization is solved with a Spatio-Temporal Dual Decomposition (ST-D2) algorithm. The performance of the proposed formulation and algorithm is demonstrated on the IEEE 33-bus distribution model.
In this paper we present a Learning Model Predictive Controller (LMPC) for autonomous racing. We model the autonomous racing problem as a minimum time iterative control task, where an iteration corresponds to a lap. In the proposed approach at each lap the race time does not increase compared to the previous lap. The system trajectory and input sequence of each lap are stored and used to systematically update the controller for the next lap. The first contribution of the paper is to propose a LMPC strategy which reduces the computational burden associated with existing LMPC strategies. In particular, we show how to construct a safe set and an approximation to the value function, using a subset of the stored data. The second contribution is to present a system identification strategy for the autonomous racing iterative control task. We use data from previous iterations and the vehicles kinematics equations to build an affine time-varying prediction model. The effectiveness of the proposed strategy is demonstrated by experimental results on the Berkeley Autonomous Race Car (BARC) platform.
140 - Christian Leonard 2007
A probabilistic method for solving the Monge-Kantorovich mass transport problem on $R^d$ is introduced. A system of empirical measures of independent particles is built in such a way that it obeys a doubly indexed large deviation principle with an optimal transport cost as its rate function. As a consequence, new approximation results for the optimal cost function and the optimal transport plans are derived. They follow from the Gamma-convergence of a sequence of normalized relative entropies toward the optimal transport cost. A wide class of cost functions including the standard power cost functions $|x-y|^p$ enter this framework.
In this paper, a sample-based procedure for obtaining simple and computable approximations of chance-constrained sets is proposed. The procedure allows to control the complexity of the approximating set, by defining families of simple-approximating sets of given complexity. A probabilistic scaling procedure then allows to rescale these sets to obtain the desired probabilistic guarantees. The proposed approach is shown to be applicable in several problem in systems and control, such as the design of Stochastic Model Predictive Control schemes or the solution of probabilistic set membership estimation problems.
To help mitigate road congestion caused by the unrelenting growth of traffic demand, many transportation authorities have implemented managed lane policies, which restrict certain freeway lanes to certain types of vehicles. It was originally thought that managed lanes would improve the use of existing infrastructure through demand-management behaviors like carpooling, but implementations have often been characterized by unpredicted phenomena that are sometimes detrimental to system performance. The development of traffic models that can capture these sorts of behaviors is a key step for helping managed lanes deliver on their promised gains. Towards this goal, this paper presents an approach for solving for driver behavior of entering and exiting managed lanes at the macroscopic (i.e., fluid approximation of traffic) scale. Our method is inspired by recent work in extending a dynamic-system-based modeling framework from traffic behaviors on individual roads, to models at junctions, and can be considered a further extension of this dynamic-system paradigm to the route/lane choice problem. Unlike traditional route choice models that are often based on discrete-choice methods and often rely on computing and comparing drivers estimated travel times from taking different routes, our method is agnostic to the particular choice of physical traffic model and is suited specifically towards making decisions at these interfaces using only local information. These features make it a natural drop-in component to extend existing dynamic traffic modeling methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا