Do you want to publish a course? Click here

Compiling a Higher-Order Smart Contract Language to LLVM

87   0   0.0 ( 0 )
 Added by Ilya Sergey
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Scilla is a higher-order polymorphic typed intermediate level language for implementing smart contracts. In this talk, we describe a Scilla compiler targeting LLVM, with a focus on mapping Scilla types, values, and its functional language constructs to LLVM-IR. The compiled LLVM-IR, when executed with LLVMs JIT framework, achieves a speedup of about 10x over the reference interpreter on a typical Scilla contract. This reduced latency is crucial in the setting of blockchains, where smart contracts are executed as parts of transactions, to achieve peak transactions processed per second. Experiments on the Ackermann function achieved a speedup of more than 45x. This talk abstract is aimed at both programming language researchers looking to implement an LLVM based compiler for their functional language, as well as at LLVM practitioners.



rate research

Read More

We present a new way of embedding functional languages into the Coq proof assistant by using meta-programming. This allows us to develop the meta-theory of the language using the deep embedding and provides a convenient way for reasoning about concrete programs using the shallow embedding. We connect the deep and the shallow embeddings by a soundness theorem. As an instance of our approach, we develop an embedding of a core smart contract language into Coq and verify several important properties of a crowdfunding contract based on a previous formalisation of smart contract execution in blockchains.
Linear type systems have a long and storied history, but not a clear path forward to integrate with existing languages such as OCaml or Haskell. In this paper, we study a linear type system designed with two crucial properties in mind: backwards-compatibility and code reuse across linear and non-linear users of a library. Only then can the benefits of linear types permeate conventional functional programming. Rather than bifurcate types into linear and non-linear counterparts, we instead attach linearity to function arrows. Linear functions can receive inputs from linearly-bound values, but can also operate over unrestricted, regular values. To demonstrate the efficacy of our linear type system - both how easy it can be integrated in an existing language implementation and how streamlined it makes it to write programs with linear types - we implemented our type system in GHC, the leading Haskell compiler, and demonstrate two kinds of applications of linear types: mutable data with pure interfaces; and enforcing protocols in I/O-performing functions.
154 - David S. Hardin 2014
In our current work a library of formally verified software components is to be created, and assembled, using the Low-Level Virtual Machine (LLVM) intermediate form, into subsystems whose top-level assurance relies on the assurance of the individual components. We have thus undertaken a project to build a translator from LLVM to the applicative subset of Common Lisp accepted by the ACL2 theorem prover. Our translator produces executable ACL2 formal models, allowing us to both prove theorems about the translated models as well as validate those models by testing. The resulting models can be translated and certified without user intervention, even for code with loops, thanks to the use of the def::ung macro which allows us to defer the question of termination. Initial measurements of concrete execution for translated LLVM functions indicate that performance is nearly 2.4 million LLVM instructions per second on a typical laptop computer. In this paper we overview the translation process and illustrate the translators capabilities by way of a concrete example, including both a functional correctness theorem as well as a validation test for that example.
Smart contracts are automated or self-enforcing contracts that can be used to exchange assets without having to place trust in third parties. Many commercial transactions use smart contracts due to their potential benefits in terms of secure peer-to-peer transactions independent of external parties. Experience shows that many commonly used smart contracts are vulnerable to serious malicious attacks which may enable attackers to steal valuable assets of involving parties. There is therefore a need to apply analysis and automated repair techniques to detect and repair bugs in smart contracts before being deployed. In this work, we present the first general-purpose automated smart contract repair approach that is also gas-aware. Our repair method is search-based and searches among mutations of the buggy contract. Our method also considers the gas usage of the candidate patches by leveraging our novel notion of gas dominance relationship. We have made our smart contract repair tool SCRepair available open-source, for investigation by the wider community.
232 - Yuting Wang 2017
We argue that the implementation and verification of compilers for functional programming languages are greatly simplified by employing a higher-order representation of syntax known as Higher-Order Abstract Syntax or HOAS. The underlying idea of HOAS is to use a meta-language that provides a built-in and logical treatment of binding related notions. By embedding the meta-language within a larger programming or reasoning framework, it is possible to absorb the treatment of binding structure in the object language into the meta-theory of the system, thereby greatly simplifying the overall implementation and reasoning processes. We develop the above argument in this thesis by presenting and demonstrating the effectiveness of an approach to the verified implementation of compiler transformations for functional programs that exploits HOAS. In this approach, transformations on functional programs are first articulated in the form of rule-based relational specifications. These specifications are rendered into programs in the language lambda Prolog. On the one hand, these programs serve directly as implementations. On the other hand, they can be used as input to the Abella system which allows us to prove properties about them and thereby about the implementations. Both lambda Prolog and Abella support the use of the HOAS approach. Thus, they constitute a framework that can be used to test out the benefits of the HOAS approach in verified compilation. We use them to implement and verify a compiler for a representative functional programming language that embodies the transformations that form the core of many compilers for such languages. In both the programming and the reasoning phases, we show how the use of the HOAS approach significantly simplifies the representation, manipulation, analysis and reasoning of binding structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا