Do you want to publish a course? Click here

ConCert: A Smart Contract Certification Framework in Coq

102   0   0.0 ( 0 )
 Added by Danil Annenkov
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present a new way of embedding functional languages into the Coq proof assistant by using meta-programming. This allows us to develop the meta-theory of the language using the deep embedding and provides a convenient way for reasoning about concrete programs using the shallow embedding. We connect the deep and the shallow embeddings by a soundness theorem. As an instance of our approach, we develop an embedding of a core smart contract language into Coq and verify several important properties of a crowdfunding contract based on a previous formalisation of smart contract execution in blockchains.



rate research

Read More

We implement extraction of Coq programs to functional languages based on MetaCoqs certified erasure. As part of this, we implement an optimisation pass removing unused arguments. We prove the pass correct wrt. a conventional call-by-value operational semantics of functional languages. We apply this to two functional smart contract languages, Liquidity and Midlang, and to the functional language Elm. Our development is done in the context of the ConCert framework that enables smart contract verification. We contribute a verified boardroom voting smart contract featuring maximum voter privacy such that each vote is kept private except under collusion of all other parties. We also integrate property-based testing into ConCert using QuickChick and our development is the first to support testing properties of interacting smart contracts. We test several complex contracts such as a DAO-like contract, an escrow contract, an implementation of a Decentralized Finance (DeFi) contract which includes a custom token standard (Tezos FA2), and more. In total, this gives us a way to write dependent programs in Coq, test them semi-automatically, verify, and then extract to functional smart contract languages, while retaining a small trusted computing base of only MetaCoq and the pretty-printers into these languages.
We present a model/executable specification of smart contract execution in Coq. Our formalization allows for inter-contract communication and generalizes existing work by allowing modelling of both depth-first execution blockchains (like Ethereum) and breadth-first execution blockchains (like Tezos). We represent smart contracts programs in Coqs functional language Gallina, enabling easier reasoning about functional correctness of concrete contracts than other approaches. In particular we develop a Congress contract in this style. This contract -- a simplified version of the infamous DAO -- is interesting because of its very dynamic communication pattern with other contracts. We give a high-level partial specification of the Congresss behavior, related to reentrancy, and prove that the Congress satisfies it for all possible smart contract execution orders.
We implement extraction of Coq programs to functional languages based on MetaCoqs certified erasure. We extend the MetaCoq erasure output language with typing information and use it as an intermediate representation, which we call $lambda^T_square$. We complement the extraction functionality with a full pipeline that includes several standard transformations (eta-expansion, inlining, etc) implemented in a proof-generating manner along with a verified optimisation pass removing unused arguments. We prove the pass correct wrt. a conventional call-by-value operational semantics of functional languages. From the optimised $lambda^T_square$ representation, we obtain code in two functional smart contract languages (Liquidity and CameLIGO), the functional language Elm, and a subset of the multi-paradigm language for systems programming Rust. Rust is currently gaining popularity as a language for smart contracts, and we demonstrate how our extraction can be used to extract smart contract code for the Concordium network. The development is done in the context of the ConCert framework that enables smart contract verification. We contribute with two verified real-world smart contracts (boardroom voting and escrow), which we use, among other examples, to exemplify the applicability of the pipeline. In addition, we develop a verified web application and extract it to fully functional Elm code. In total, this gives us a way to write dependently typed programs in Coq, verify, and then extract them to several target languages while retaining a small trusted computing base of only MetaCoq and the pretty-printers into these languages.
A quantum circuit is a computational unit that transforms an input quantum state to an output one. A natural way to reason about its behavior is to compute explicitly the unitary matrix implemented by it. However, when the number of qubits increases, the matrix dimension grows exponentially and the computation becomes intractable. In this paper, we propose a symbolic approach to reasoning about quantum circuits. It is based on a small set of laws involving some basic manipulations on vectors and matrices. This symbolic reasoning scales better than the explicit one and is well suited to be automated in Coq, as demonstrated with some typical examples.
Scilla is a higher-order polymorphic typed intermediate level language for implementing smart contracts. In this talk, we describe a Scilla compiler targeting LLVM, with a focus on mapping Scilla types, values, and its functional language constructs to LLVM-IR. The compiled LLVM-IR, when executed with LLVMs JIT framework, achieves a speedup of about 10x over the reference interpreter on a typical Scilla contract. This reduced latency is crucial in the setting of blockchains, where smart contracts are executed as parts of transactions, to achieve peak transactions processed per second. Experiments on the Ackermann function achieved a speedup of more than 45x. This talk abstract is aimed at both programming language researchers looking to implement an LLVM based compiler for their functional language, as well as at LLVM practitioners.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا