No Arabic abstract
Essentially generalizing Lies results, we prove that the contact equivalence groupoid of a class of (1+1)-dimensional generalized nonlinear Klein-Gordon equations is the first-order prolongation of its point equivalence groupoid, and then we carry out the complete group classification of this class. Since it is normalized, the algebraic method of group classification is naturally applied here. Using the specific structure of the equivalence group of the class, we essentially employ the classical Lie theorem on realizations of Lie algebras by vector fields on the line. This approach allows us to enhance previous results on Lie symmetries of equations from the class and substantially simplify the proof. After finding a number of integer characteristics of cases of Lie-symmetry extensions that are invariant under action of the equivalence group of the class under study, we exhaustively describe successive Lie-symmetry extensions within this class.
We study admissible and equivalence point transformations between generalized multidimensional nonlinear Schrodinger equations and classify Lie symmetries of such equations. We begin with a wide superclass of Schrodinger-type equations, which includes all the other classes considered in the paper. Showing that this superclass is not normalized, we partition it into two disjoint normalized subclasses, which are not related by point transformations. Further constraining the arbitrary elements of the superclass, we construct a hierarchy of normalized classes of Schrodinger-type equations. This gives us an appropriate normalized superclass for the non-normalized class of multidimensional nonlinear Schrodinger equations with potentials and modular nonlinearities and allows us to partition the latter class into three families of normalized subclasses. After a preliminary study of Lie symmetries of nonlinear Schrodinger equations with potentials and modular nonlinearities for an arbitrary space dimension, we exhaustively solve the group classification problem for such equations in space dimension two.
We study realizations of Lie algebras by vector fields. A correspondence between classification of transitive local realizations and classification of subalgebras is generalized to the case of regular local realizations. A reasonable classification problem for general realizations is rigorously formulated and an algorithm for construction of such classification is presented.
Enhancing and essentially generalizing previous results on a class of (1+1)-dimensional nonlinear wave and elliptic equations, we apply several new techniques to classify admissible point transformations within this class up to the equivalence generated by its equivalence group. This gives an exhaustive description of its equivalence groupoid. After extending the algebraic method of group classification to non-normalized classes of differential equations, we solve the complete group classification problem for the class under study up to both usual and general point equivalences. The solution includes the complete preliminary group classification of the class and the construction of singular Lie-symmetry extensions, which are not related to subalgebras of the equivalence algebra. The complete preliminary group classification is based on classifying appropriate subalgebras of the entire infinite-dimensional equivalence algebra whose projections are qualified as maximal extensions of the kernel invariance algebra. The results obtained can be used to construct exact solutions of nonlinear wave and elliptic equations.
In this paper we study Lie symmetries, Kac-Moody-Virasoro algebras, similarity reductions and particular solutions of two different recently introduced (2+1)-dimensional nonlinear evolution equations, namely (i) (2+1)-dimensional breaking soliton equation and (ii) (2+1)-dimensional nonlinear Schrodinger type equation introduced by Zakharov and studied later by Strachan. Interestingly our studies show that not all integrable higher dimensional systems admit Kac-Moody-Virasoro type sub-algebras. Particularly the two integrable systems mentioned above do not admit Virasoro type subalgebras, eventhough the other integrable higher dimensional systems do admit such algebras which we have also reviewed in the Appendix. Further, we bring out physically interesting solutions for special choices of the symmetry parameters in both the systems.
All inequivalent realizations of the Galilei algebras of dimensions not greater than five are constructed using the algebraic approach proposed by I. Shirokov. The varieties of the deformed Galilei algebras are discussed and families of one-parametric deformations are presented in explicit form. It is also shown that a number of well-known and physically interesting equations and systems are invariant with respect to the considered Galilei algebras or their deformations.