Do you want to publish a course? Click here

On classification of Lie algebra realizations

74   0   0.0 ( 0 )
 Added by Daniel Gromada
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study realizations of Lie algebras by vector fields. A correspondence between classification of transitive local realizations and classification of subalgebras is generalized to the case of regular local realizations. A reasonable classification problem for general realizations is rigorously formulated and an algorithm for construction of such classification is presented.

rate research

Read More

Essentially generalizing Lies results, we prove that the contact equivalence groupoid of a class of (1+1)-dimensional generalized nonlinear Klein-Gordon equations is the first-order prolongation of its point equivalence groupoid, and then we carry out the complete group classification of this class. Since it is normalized, the algebraic method of group classification is naturally applied here. Using the specific structure of the equivalence group of the class, we essentially employ the classical Lie theorem on realizations of Lie algebras by vector fields on the line. This approach allows us to enhance previous results on Lie symmetries of equations from the class and substantially simplify the proof. After finding a number of integer characteristics of cases of Lie-symmetry extensions that are invariant under action of the equivalence group of the class under study, we exhaustively describe successive Lie-symmetry extensions within this class.
240 - Xiang Ni , Chengming Bai 2010
A special symplectic Lie group is a triple $(G,omega, abla)$ such that $G$ is a finite-dimensional real Lie group and $omega$ is a left invariant symplectic form on $G$ which is parallel with respect to a left invariant affine structure $ abla$. In this paper starting from a special symplectic Lie group we show how to ``deform the standard Lie group structure on the (co)tangent bundle through the left invariant affine structure $ abla$ such that the resulting Lie group admits families of left invariant hypersymplectic structures and thus becomes a hypersymplectic Lie group. We consider the affine cotangent extension problem and then introduce notions of post-affine structure and post-left-symmetric algebra which is the underlying algebraic structure of a special symplectic Lie algebra. Furthermore, we give a kind of double extensions of special symplectic Lie groups in terms of post-left-symmetric algebras.
A complete set of inequivalent realizations of three- and four-dimensional real unsolvable Lie algebras in vector fields on a space of an arbitrary (finite) number of variables is obtained.
The topological classification of gerbes, as principal bundles with the structure group the projective unitary group of a complex Hilbert space, over a topological space $H$ is given by the third cohomology $text{H}^3(H, Bbb Z)$. When $H$ is a topological group the integral cohomology is often related to a locally continuous (or in the case of a Lie group, locally smooth) third group cohomology of $H$. We shall study in more detail this relation in the case of a group extension $1to N to G to H to 1$ when the gerbe is defined by an abelian extension $1to A to hat N to N to 1$ of $N$. In particular, when $text{H}_s^1(N,A)$ vanishes we shall construct a transgression map $text{H}^2_s(N, A) to text{H}^3_s(H, A^N)$, where $A^N$ is the subgroup of $N$-invariants in $A$ and the subscript $s$ denotes the locally smooth cohomology. Examples of this relation appear in gauge theory which are discussed in the paper.
There is a decomposition of a Lie algebra for open matrix chains akin to the triangular decomposition. We use this decomposition to construct unitary irreducible representations. All multiple meson states can be retrieved this way. Moreover, they are the only states with a finite number of non-zero quantum numbers with respect to a certain set of maximally commuting linearly independent quantum observables. Any other state is a tensor product of a multiple meson state and a state coming from a representation of a quotient algebra that extends and generalizes the Virasoro algebra. We expect the representation theory of this quotient algebra to describe physical systems at the thermodynamic limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا