Do you want to publish a course? Click here

From Lieb-Thirring inequalities to spectral enclosures for the damped wave equation

76   0   0.0 ( 0 )
 Added by David Krejcirik
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using a correspondence between the spectrum of the damped wave equation and non-self-adjoint Schroedinger operators, we derive various bounds on complex eigenvalues of the former. In particular, we establish a sharp result that the one-dimensional damped wave operator is similar to the undamped one provided that the L^1 norm of the (possibly complex-valued) damping is less than 2. It follows that these small dampings are spectrally undetectable.



rate research

Read More

We consider a Schrodinger operator on the half-line with a Dirichlet boundary condition at the origin and show that moments of its negative eigenvalues can be estimated by the part of the potential that is larger than the critical Hardy weight. The estimate is valid for the critical value of the moment parameter.
This paper considers Lieb-Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality tr((-Delta)^2 - C^{HR}_{d,2} / (|x|^4) - V(x))^{-gamma} < C_gamma int_{R^d} V(x)_+^{gamma + d/4} dx for gamma geq 1 - d/4, where C^{HR}_{d,2} is the sharp constant in the Hardy-Rellich inequality and where C_gamma > 0 is independent of V, is proved for dimensions d = 1,3. As a corollary of this inequality a Sobolev-type inequality is obtained.
We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of $mathbb{R}^2$. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szego type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality.
We consider the problem of geometric optimization of the lowest eigenvalue for the Laplacian on a compact, simply-connected two-dimensional manifold with boundary subject to an attractive Robin boundary condition. We prove that in the sub-class of manifolds with the Gauss curvature bounded from above by a constant $K_circ ge 0$ and under the constraint of fixed perimeter, the geodesic disk of constant curvature $K_circ$ maximizes the lowest Robin eigenvalue. In the same geometric setting, it is proved that the spectral isoperimetric inequality holds for the lowest eigenvalue of the Dirichlet-to-Neumann operator. Finally, we adapt our methods to Robin Laplacians acting on unbounded three-dimensional cones to show that, under a constraint of fixed perimeter of the cross-section, the lowest Robin eigenvalue is maximized by the circular cone.
We prove a Lieb-Thirring type inequality for potentials such that the associated Schr{o}dinger operator has a pure discrete spectrum made of an unbounded sequence of eigenvalues. This inequality is equivalent to a generalized Gagliardo-Nirenberg inequality for systems. As a special case, we prove a logarithmic Sobolev inequality for infinite systems of mixed states. Optimal constants are determined and free energy estimates in connection with mixed states representations are also investigated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا