Do you want to publish a course? Click here

A variational formulation for Dirac operators in bounded domains. Applications to spectral geometric inequalities

80   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of $mathbb{R}^2$. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szego type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality.



rate research

Read More

In this paper the spectral and scattering properties of a family of self-adjoint Dirac operators in $L^2(Omega; mathbb{C}^4)$, where $Omega subset mathbb{R}^3$ is either a bounded or an unbounded domain with a compact $C^2$-smooth boundary, are studied in a systematic way. These operators can be viewed as the natural relativistic counterpart of Laplacians with Robin boundary conditions. Among the Dirac operators treated here is also the so-called MIT bag operator, which has been used by physicists and more recently was discussed in the mathematical literature. Our approach is based on abstract boundary triple techniques from extension theory of symmetric operators and a thorough study of certain classes of (boundary) integral operators, that appear in a Krein-type resolvent formula. The analysis of the perturbation term in this formula leads to a description of the spectrum and a Birman-Schwinger principle, a qualitative understanding of the scattering properties in the case that $Omega$ is unbounded, and corresponding trace formulas.
We consider harmonic Toeplitz operators $T_V = PV:{mathcal H}(Omega) to {mathcal H}(Omega)$ where $P: L^2(Omega) to {mathcal H}(Omega)$ is the orthogonal projection onto ${mathcal H}(Omega) = left{u in L^2(Omega),|,Delta u = 0 ; mbox{in};Omegaright}$, $Omega subset {mathbb R}^d$, $d geq 2$, is a bounded domain with $partial Omega in C^infty$, and $V: Omega to {mathbb C}$ is a suitable multiplier. First, we complement the known criteria which guarantee that $T_V$ is in the $p$th Schatten-von Neumann class $S_p$, by sufficient conditions which imply $T_V in S_{p, {rm w}}$, the weak counterpart of $S_p$. Next, we assume that $Omega$ is the unit ball in ${mathbb R}^d$, and $V = overline{V}$ is radially symmetric, and investigate the eigenvalue asymptotics of $T_V$ if $V$ has a power-like decay at $partial Omega$ or $V$ is compactly supported in $Omega$. Further, we consider general $Omega$ and $V geq 0$ which is regular in $Omega$, and admits a power-like decay of rate $gamma > 0$ at $partial Omega$, and we show that in this case $T_V$ is unitarily equivalent to a pseudo-differential operator of order $-gamma$, self-adjoint in $L^2(partial Omega)$. Using this unitary equivalence, we obtain the main asymptotic term of the eigenvalue counting function for the operator $T_V$. Finally, we introduce the Krein Laplacian $K geq 0$, self-adjoint in $L^2(Omega)$; it is known that ${rm Ker},K = {mathcal H}(Omega)$, and the zero eigenvalue of $K$ is isolated. We perturb $K$ by $V in C(overline{Omega};{mathbb R})$, and show that $sigma_{rm ess}(K+V) = V(partial Omega)$. Assuming that $V geq 0$ and $V{|partial Omega} = 0$, we study the asymptotic distribution of the eigenvalues of $K pm V$ near the origin, and find that the effective Hamiltonian which governs this distribution is the Toeplitz operator $T_V$.
We study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings, while only rough estimates were available for the next eigenvalues. Under some geometric assumptions, we go beyond the critical eigenvalue number and give a precise asymptotics of any individual eigenvalue by establishing a link with an effective Schrodinger-type operator on the boundary of the domain with boundary conditions at the corners.
In this note the two dimensional Dirac operator $A_eta$ with an electrostatic $delta$-shell interaction of strength $etainmathbb R$ supported on a straight line is studied. We observe a spectral transition in the sense that for the critical interaction strengths $eta=pm 2$ the continuous spectrum of $A_eta$ inside the spectral gap of the free Dirac operator $A_0$ collapses abruptly to a single point.
We study Riesz means of the eigenvalues of the Heisenberg Laplacian with Dirichlet boundary conditions on bounded domains. We obtain an inequality with a sharp leading term and an additional lower order term, improving the result of Hanson and Laptev.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا