Do you want to publish a course? Click here

Transfer Learning for Improving Singing-voice Detection in Polyphonic Instrumental Music

113   0   0.0 ( 0 )
 Added by Yuanbo Hou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Detecting singing-voice in polyphonic instrumental music is critical to music information retrieval. To train a robust vocal detector, a large dataset marked with vocal or non-vocal label at frame-level is essential. However, frame-level labeling is time-consuming and labor expensive, resulting there is little well-labeled dataset available for singing-voice detection (S-VD). Hence, we propose a data augmentation method for S-VD by transfer learning. In this study, clean speech clips with voice activity endpoints and separate instrumental music clips are artificially added together to simulate polyphonic vocals to train a vocal/non-vocal detector. Due to the different articulation and phonation between speaking and singing, the vocal detector trained with the artificial dataset does not match well with the polyphonic music which is singing vocals together with the instrumental accompaniments. To reduce this mismatch, transfer learning is used to transfer the knowledge learned from the artificial speech-plus-music training set to a small but matched polyphonic dataset, i.e., singing vocals with accompaniments. By transferring the related knowledge to make up for the lack of well-labeled training data in S-VD, the proposed data augmentation method by transfer learning can improve S-VD performance with an F-score improvement from 89.5% to 93.2%.



rate research

Read More

Voice style transfer, also called voice conversion, seeks to modify one speakers voice to generate speech as if it came from another (target) speaker. Previous works have made progress on voice conversion with parallel training data and pre-known speakers. However, zero-shot voice style transfer, which learns from non-parallel data and generates voices for previously unseen speakers, remains a challenging problem. We propose a novel zero-shot voice transfer method via disentangled representation learning. The proposed method first encodes speaker-related style and voice content of each input voice into separated low-dimensional embedding spaces, and then transfers to a new voice by combining the source content embedding and target style embedding through a decoder. With information-theoretic guidance, the style and content embedding spaces are representative and (ideally) independent of each other. On real-world VCTK datasets, our method outperforms other baselines and obtains state-of-the-art results in terms of transfer accuracy and voice naturalness for voice style transfer experiments under both many-to-many and zero-shot setups.
Music source separation is important for applications such as karaoke and remixing. Much of previous research focuses on estimating short-time Fourier transform (STFT) magnitude and discarding phase information. We observe that, for singing voice separation, phase can make considerable improvement in separation quality. This paper proposes a complex ratio masking method for voice and accompaniment separation. The proposed method employs DenseUNet with self attention to estimate the real and imaginary components of STFT for each sound source. A simple ensemble technique is introduced to further improve separation performance. Evaluation results demonstrate that the proposed method outperforms recent state-of-the-art models for both separated voice and accompaniment.
Background music affects lyrics intelligibility of singing vocals in a music piece. Automatic lyrics alignment and transcription in polyphonic music are challenging tasks because the singing vocals are corrupted by the background music. In this work, we propose to learn music genre-specific characteristics to train polyphonic acoustic models. We first compare several automatic speech recognition pipelines for the application of lyrics transcription. We then present the lyrics alignment and transcription performance of music-informed acoustic models for the best-performing pipeline, and systematically study the impact of music genre and language model on the performance. With such genre-based approach, we explicitly model the music without removing it during acoustic modeling. The proposed approach outperforms all competing systems in the lyrics alignment and transcription tasks on several well-known polyphonic test datasets.
The dominant approach for music representation learning involves the deep unsupervised model family variational autoencoder (VAE). However, most, if not all, viable attempts on this problem have largely been limited to monophonic music. Normally composed of richer modality and more complex musical structures, the polyphonic counterpart has yet to be addressed in the context of music representation learning. In this work, we propose the PianoTree VAE, a novel tree-structure extension upon VAE aiming to fit the polyphonic music learning. The experiments prove the validity of the PianoTree VAE via (i)-semantically meaningful latent code for polyphonic segments; (ii)-more satisfiable reconstruction aside of decent geometry learned in the latent space; (iii)-this models benefits to the variety of the downstream music generation.
Singing voice conversion is converting the timbre in the source singing to the target speakers voice while keeping singing content the same. However, singing data for target speaker is much more difficult to collect compared with normal speech data.In this paper, we introduce a singing voice conversion algorithm that is capable of generating high quality target speakers singing using only his/her normal speech data. First, we manage to integrate the training and conversion process of speech and singing into one framework by unifying the features used in standard speech synthesis system and singing synthesis system. In this way, normal speech data can also contribute to singing voice conversion training, making the singing voice conversion system more robust especially when the singing database is small.Moreover, in order to achieve one-shot singing voice conversion, a speaker embedding module is developed using both speech and singing data, which provides target speaker identify information during conversion. Experiments indicate proposed sing conversion system can convert source singing to target speakers high-quality singing with only 20 seconds of target speakers enrollment speech data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا