No Arabic abstract
Voice style transfer, also called voice conversion, seeks to modify one speakers voice to generate speech as if it came from another (target) speaker. Previous works have made progress on voice conversion with parallel training data and pre-known speakers. However, zero-shot voice style transfer, which learns from non-parallel data and generates voices for previously unseen speakers, remains a challenging problem. We propose a novel zero-shot voice transfer method via disentangled representation learning. The proposed method first encodes speaker-related style and voice content of each input voice into separated low-dimensional embedding spaces, and then transfers to a new voice by combining the source content embedding and target style embedding through a decoder. With information-theoretic guidance, the style and content embedding spaces are representative and (ideally) independent of each other. On real-world VCTK datasets, our method outperforms other baselines and obtains state-of-the-art results in terms of transfer accuracy and voice naturalness for voice style transfer experiments under both many-to-many and zero-shot setups.
Detecting singing-voice in polyphonic instrumental music is critical to music information retrieval. To train a robust vocal detector, a large dataset marked with vocal or non-vocal label at frame-level is essential. However, frame-level labeling is time-consuming and labor expensive, resulting there is little well-labeled dataset available for singing-voice detection (S-VD). Hence, we propose a data augmentation method for S-VD by transfer learning. In this study, clean speech clips with voice activity endpoints and separate instrumental music clips are artificially added together to simulate polyphonic vocals to train a vocal/non-vocal detector. Due to the different articulation and phonation between speaking and singing, the vocal detector trained with the artificial dataset does not match well with the polyphonic music which is singing vocals together with the instrumental accompaniments. To reduce this mismatch, transfer learning is used to transfer the knowledge learned from the artificial speech-plus-music training set to a small but matched polyphonic dataset, i.e., singing vocals with accompaniments. By transferring the related knowledge to make up for the lack of well-labeled training data in S-VD, the proposed data augmentation method by transfer learning can improve S-VD performance with an F-score improvement from 89.5% to 93.2%.
Current voice conversion (VC) methods can successfully convert timbre of the audio. As modeling source audios prosody effectively is a challenging task, there are still limitations of transferring source style to the converted speech. This study proposes a source style transfer method based on recognition-synthesis framework. Previously in speech generation task, prosody can be modeled explicitly with prosodic features or implicitly with a latent prosody extractor. In this paper, taking advantages of both, we model the prosody in a hybrid manner, which effectively combines explicit and implicit methods in a proposed prosody module. Specifically, prosodic features are used to explicit model prosody, while VAE and reference encoder are used to implicitly model prosody, which take Mel spectrum and bottleneck feature as input respectively. Furthermore, adversarial training is introduced to remove speaker-related information from the VAE outputs, avoiding leaking source speaker information while transferring style. Finally, we use a modified self-attention based encoder to extract sentential context from bottleneck features, which also implicitly aggregates the prosodic aspects of source speech from the layered representations. Experiments show that our approach is superior to the baseline and a competitive system in terms of style transfer; meanwhile, the speech quality and speaker similarity are well maintained.
Traditional voice conversion(VC) has been focused on speaker identity conversion for speech with a neutral expression. We note that emotional expression plays an essential role in daily communication, and the emotional style of speech can be speaker-dependent. In this paper, we study the technique to jointly convert the speaker identity and speaker-dependent emotional style, that is called expressive voice conversion. We propose a StarGAN-based framework to learn a many-to-many mapping across different speakers, that takes into account speaker-dependent emotional style without the need for parallel data. To achieve this, we condition the generator on emotional style encoding derived from a pre-trained speech emotion recognition(SER) model. The experiments validate the effectiveness of our proposed framework in both objective and subjective evaluations. To our best knowledge, this is the first study on expressive voice conversion.
This paper presents a novel framework to build a voice conversion (VC) system by learning from a text-to-speech (TTS) synthesis system, that is called TTS-VC transfer learning. We first develop a multi-speaker speech synthesis system with sequence-to-sequence encoder-decoder architecture, where the encoder extracts robust linguistic representations of text, and the decoder, conditioned on target speaker embedding, takes the context vectors and the attention recurrent network cell output to generate target acoustic features. We take advantage of the fact that TTS system maps input text to speaker independent context vectors, and reuse such a mapping to supervise the training of latent representations of an encoder-decoder voice conversion system. In the voice conversion system, the encoder takes speech instead of text as input, while the decoder is functionally similar to TTS decoder. As we condition the decoder on speaker embedding, the system can be trained on non-parallel data for any-to-any voice conversion. During voice conversion training, we present both text and speech to speech synthesis and voice conversion networks respectively. At run-time, the voice conversion network uses its own encoder-decoder architecture. Experiments show that the proposed approach outperforms two competitive voice conversion baselines consistently, namely phonetic posteriorgram and variational autoencoder methods, in terms of speech quality, naturalness, and speaker similarity.
High-quality speech corpora are essential foundations for most speech applications. However, such speech data are expensive and limited since they are collected in professional recording environments. In this work, we propose an encoder-decoder neural network to automatically enhance low-quality recordings to professional high-quality recordings. To address channel variability, we first filter out the channel characteristics from the original input audio using the encoder network with adversarial training. Next, we disentangle the channel factor from a reference audio. Conditioned on this factor, an auto-regressive decoder is then used to predict the target-environment Mel spectrogram. Finally, we apply a neural vocoder to synthesize the speech waveform. Experimental results show that the proposed system can generate a professional high-quality speech waveform when setting high-quality audio as the reference. It also improves speech enhancement performance compared with several state-of-the-art baseline systems.