Do you want to publish a course? Click here

Residual Generation Using Physically-Based Grey-Box Recurrent Neural Networks For Engine Fault Diagnosis

104   0   0.0 ( 0 )
 Added by Daniel Jung
 Publication date 2020
and research's language is English
 Authors Daniel Jung




Ask ChatGPT about the research

Data-driven fault diagnosis is complicated by unknown fault classes and limited training data from different fault realizations. In these situations, conventional multi-class classification approaches are not suitable for fault diagnosis. One solution is the use of anomaly classifiers that are trained using only nominal data. Anomaly classifiers can be used to detect when a fault occurs but give little information about its root cause. Hybrid fault diagnosis methods combining physically-based models and available training data have shown promising results to improve fault classification performance and identify unknown fault classes. Residual generation using grey-box recurrent neural networks can be used for anomaly classification where physical insights about the monitored system are incorporated into the design of the machine learning algorithm. In this work, an automated residual design is developed using a bipartite graph representation of the system model to design grey-box recurrent neural networks and evaluated using a real industrial case study. Data from an internal combustion engine test bench is used to illustrate the potentials of combining machine learning and model-based fault diagnosis techniques.



rate research

Read More

Atrial Fibrillation (AF) is an abnormal heart rhythm which can trigger cardiac arrest and sudden death. Nevertheless, its interpretation is mostly done by medical experts due to high error rates of computerized interpretation. One study found that only about 66% of AF were correctly recognized from noisy ECGs. This is in part due to insufficient training data, class skewness, as well as semantical ambiguities caused by noisy segments in an ECG record. In this paper, we propose a K-margin-based Residual-Convolution-Recurrent neural network (K-margin-based RCR-net) for AF detection from noisy ECGs. In detail, a skewness-driven dynamic augmentation method is employed to handle the problems of data inadequacy and class imbalance. A novel RCR-net is proposed to automatically extract both long-term rhythm-level and local heartbeat-level characters. Finally, we present a K-margin-based diagnosis model to automatically focus on the most important parts of an ECG record and handle noise by naturally exploiting expected consistency among the segments associated for each record. The experimental results demonstrate that the proposed method with 0.8125 F1NAOP score outperforms all state-of-the-art deep learning methods for AF detection task by 6.8%.
Smart thermostats are one of the most prevalent home automation products. They learn occupant preferences and schedules, and utilize an accurate thermal model to reduce the energy use of heating and cooling equipment while maintaining the temperature for maximum comfort. Despite the importance of having an accurate thermal model for the operation of smart thermostats, fast and reliable identification of this model is still an open problem. In this paper, we explore various techniques for establishing a suitable thermal model using time series data generated by smart thermostats. We show that Bayesian neural networks can be used to estimate parameters of a grey-box thermal model if sufficient training data is available, and this model outperforms several black-box models in terms of the temperature prediction accuracy. Leveraging real data from 8,884 homes equipped with smart thermostats, we discuss how the prior knowledge about the model parameters can be utilized to quickly build an accurate thermal model for another home with similar floor area and age in the same climate zone. Moreover, we investigate how to adapt the model originally built for the same home in another season using a small amount of data collected in this season. Our results confirm that maintaining only a small number of pre-trained thermal models will suffice to quickly build accurate thermal models for many other homes, and that 1~day smart thermostat data could significantly improve the accuracy of transferred models in another season.
With the rising number of interconnected devices and sensors, modeling distributed sensor networks is of increasing interest. Recurrent neural networks (RNN) are considered particularly well suited for modeling sensory and streaming data. When predicting future behavior, incorporating information from neighboring sensor stations is often beneficial. We propose a new RNN based architecture for context specific information fusion across multiple spatially distributed sensor stations. Hereby, latent representations of multiple local models, each modeling one sensor station, are jointed and weighted, according to their importance for the prediction. The particular importance is assessed depending on the current context using a separate attention function. We demonstrate the effectiveness of our model on three different real-world sensor network datasets.
122 - Ziyu Liu , Xiang Zhang 2021
Electrocardiography (ECG) signal is a highly applied measurement for individual heart condition, and much effort have been endeavored towards automatic heart arrhythmia diagnosis based on machine learning. However, traditional machine learning models require large investment of time and effort for raw data preprocessing and feature extraction, as well as challenged by poor classification performance. Here, we propose a novel deep learning model, named Attention-Based Convolutional Neural Networks (ABCNN) that taking advantage of CNN and multi-head attention, to directly work on the raw ECG signals and automatically extract the informative dependencies for accurate arrhythmia detection. To evaluate the proposed approach, we conduct extensive experiments over a benchmark ECG dataset. Our main task is to find the arrhythmia from normal heartbeats and, at the meantime, accurately recognize the heart diseases from five arrhythmia types. We also provide convergence analysis of ABCNN and intuitively show the meaningfulness of extracted representation through visualization. The experimental results show that the proposed ABCNN outperforms the widely used baselines, which puts one step closer to intelligent heart disease diagnosis system.
Process Mining consists of techniques where logs created by operative systems are transformed into process models. In process mining tools it is often desired to be able to classify ongoing process instances, e.g., to predict how long the process will still require to complete, or to classify process instances to different classes based only on the activities that have occurred in the process instance thus far. Recurrent neural networks and its subclasses, such as Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM), have been demonstrated to be able to learn relevant temporal features for subsequent classification tasks. In this paper we apply recurrent neural networks to classifying process instances. The proposed model is trained in a supervised fashion using labeled process instances extracted from event log traces. This is the first time we know of GRU having been used in classifying business process instances. Our main experimental results shows that GRU outperforms LSTM remarkably in training time while giving almost identical accuracies to LSTM models. Additional contributions of our paper are improving the classification model training time by filtering infrequent activities, which is a technique commonly used, e.g., in Natural Language Processing (NLP).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا