Do you want to publish a course? Click here

Energy Communities: From European Law to Numerical Modeling

88   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In 2019, the European Union introduced two new actors in the European energy system: Renewable and Citizen Energy Communities (RECs and CECs). Modelling these two new actors and their effects on the energy system is crucial when implementing the European Legislation, incorporating energy communities (ECs) into the electric grid, planning ECs, and conducting academic research. This paper aims to bridge the gap between the letter of the law and numerical models of ECs. After introducing RECs and CECs, we list elements of the law to be considered by regulators, distribution system operators, EC planners, researchers, and other stakeholders when modelling ECs. Finally, we provide three case studies of EC models that explicitly include elements of the European Law.



rate research

Read More

Advances in algorithmic fairness have largely omitted sexual orientation and gender identity. We explore queer concerns in privacy, censorship, language, online safety, health, and employment to study the positive and negative effects of artificial intelligence on queer communities. These issues underscore the need for new directions in fairness research that take into account a multiplicity of considerations, from privacy preservation, context sensitivity and process fairness, to an awareness of sociotechnical impact and the increasingly important role of inclusive and participatory research processes. Most current approaches for algorithmic fairness assume that the target characteristics for fairness--frequently, race and legal gender--can be observed or recorded. Sexual orientation and gender identity are prototypical instances of unobserved characteristics, which are frequently missing, unknown or fundamentally unmeasurable. This paper highlights the importance of developing new approaches for algorithmic fairness that break away from the prevailing assumption of observed characteristics.
There is a historically unprecedented shift in demographics towards seniors, which will result in significant housing development over the coming decade. This is an enormous opportunity for real-estate operators to innovate and address the demand in this growing market. However, investments in this area are fraught with risk. Seniors often have more health issues, and Covid-19 has exposed just how vulnerable they are -- especially those living in close proximity. Conventionally, most services for seniors are high-touch, requiring close physical contact with trained caregivers. Not only are trained caregivers short in supply, but the pandemic has made it evident that conventional high-touch approaches to senior care are high-cost and greater risk. There are not enough caregivers to meet the needs of this emerging demographic, and even fewer who want to undertake the additional training and risk of working in a senior facility, especially given the current pandemic. In this article, we rethink the design of senior living facilities to mitigate the risks and costs using automation. With AI-enabled pervasive automation, we claim there is an opportunity, if not an urgency, to go from high-touch to almost no touch while dramatically reducing risk and cost. Although our vision goes beyond the current reality, we cite measurements from Caspar AI-enabled senior properties that show the potential benefit of this approach.
In February 2020, the European Commission (EC) published a white paper entitled, On Artificial Intelligence - A European approach to excellence and trust. This paper outlines the ECs policy options for the promotion and adoption of artificial intelligence (AI) in the European Union. The Montreal AI Ethics Institute (MAIEI) reviewed this paper and published a response addressing the ECs plans to build an ecosystem of excellence and an ecosystem of trust, as well as the safety and liability implications of AI, the internet of things (IoT), and robotics. MAIEI provides 15 recommendations in relation to the sections outlined above, including: 1) focus efforts on the research and innovation community, member states, and the private sector; 2) create alignment between trading partners policies and EU policies; 3) analyze the gaps in the ecosystem between theoretical frameworks and approaches to building trustworthy AI; 4) focus on coordination and policy alignment; 5) focus on mechanisms that promote private and secure sharing of data; 6) create a network of AI research excellence centres to strengthen the research and innovation community; 7) promote knowledge transfer and develop AI expertise through Digital Innovation Hubs; 8) add nuance to the discussion regarding the opacity of AI systems; 9) create a process for individuals to appeal an AI systems decision or output; 10) implement new rules and strengthen existing regulations; 11) ban the use of facial recognition technology; 12) hold all AI systems to similar standards and compulsory requirements; 13) ensure biometric identification systems fulfill the purpose for which they are implemented; 14) implement a voluntary labelling system for systems that are not considered high-risk; 15) appoint individuals to the oversight process who understand AI systems well and are able to communicate potential risks.
We present the OpenTED browser, a Web application allowing to interactively browse public spending data related to public procurements in the European Union. The application relies on Open Data recently published by the European Commission and the Publications Office of the European Union, from which we imported a curated dataset of 4.2 million contract award notices spanning the period 2006-2015. The application is designed to easily filter notices and visualise relationships between public contracting authorities and private contractors. The simple design allows for example to quickly find information about who the biggest suppliers of local governments are, and the nature of the contracted goods and services. We believe the tool, which we make Open Source, is a valuable source of information for journalists, NGOs, analysts and citizens for getting information on public procurement data, from large scale trends to local municipal developments.
In this paper we take into account both social and linguistic aspects to perform demographic analysis by processing a large amount of tweets in Basque language. The study of demographic characteristics and social relationships are approached by applying machine learning and modern deep-learning Natural Language Processing (NLP) techniques, combining social sciences with automatic text processing. More specifically, our main objective is to combine demographic inference and social analysis in order to detect young Basque Twitter users and to identify the communities that arise from their relationships or shared content. This social and demographic analysis will be entirely based on the~automatically collected tweets using NLP to convert unstructured textual information into interpretable knowledge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا