No Arabic abstract
Increasing demand for on-device Automatic Speech Recognition (ASR) systems has resulted in renewed interests in developing automatic model compression techniques. Past research have shown that AutoML-based Low Rank Factorization (LRF) technique, when applied to an end-to-end Encoder-Attention-Decoder style ASR model, can achieve a speedup of up to 3.7x, outperforming laborious manual rank-selection approaches. However, we show that current AutoML-based search techniques only work up to a certain compression level, beyond which they fail to produce compressed models with acceptable word error rates (WER). In this work, we propose an iterative AutoML-based LRF approach that achieves over 5x compression without degrading the WER, thereby advancing the state-of-the-art in ASR compression.
The multivariate probit model (MVP) is a popular classic model for studying binary responses of multiple entities. Nevertheless, the computational challenge of learning the MVP model, given that its likelihood involves integrating over a multidimensional constrained space of latent variables, significantly limits its application in practice. We propose a flexible deep generalization of the classic MVP, the Deep Multivariate Probit Model (DMVP), which is an end-to-end learning scheme that uses an efficient parallel sampling process of the multivariate probit model to exploit GPU-boosted deep neural networks. We present both theoretical and empirical analysis of the convergence behavior of DMVPs sampling process with respect to the resolution of the correlation structure. We provide convergence guarantees for DMVP and our empirical analysis demonstrates the advantages of DMVPs sampling compared with standard MCMC-based methods. We also show that when applied to multi-entity modelling problems, which are natural DMVP applications, DMVP trains faster than classical MVP, by at least an order of magnitude, captures rich correlations among entities, and further improves the joint likelihood of entities compared with several competitive models.
End-to-end AutoML has attracted intensive interests from both academia and industry, which automatically searches for ML pipelines in a space induced by feature engineering, algorithm/model selection, and hyper-parameter tuning. Existing AutoML systems, however, suffer from scalability issues when applying to application domains with large, high-dimensional search spaces. We present VolcanoML, a scalable and extensible framework that facilitates systematic exploration of large AutoML search spaces. VolcanoML introduces and implements basic building blocks that decompose a large search space into smaller ones, and allows users to utilize these building blocks to compose an execution plan for the AutoML problem at hand. VolcanoML further supports a Volcano-style execution model - akin to the one supported by modern database systems - to execute the plan constructed. Our evaluation demonstrates that, not only does VolcanoML raise the level of expressiveness for search space decomposition in AutoML, it also leads to actual findings of decomposition strategies that are significantly more efficient than the ones employed by state-of-the-art AutoML systems such as auto-sklearn.
End-to-end (E2E) models have shown to outperform state-of-the-art conventional models for streaming speech recognition [1] across many dimensions, including quality (as measured by word error rate (WER)) and endpointer latency [2]. However, the model still tends to delay the predictions towards the end and thus has much higher partial latency compared to a conventional ASR model. To address this issue, we look at encouraging the E2E model to emit words early, through an algorithm called FastEmit [3]. Naturally, improving on latency results in a quality degradation. To address this, we explore replacing the LSTM layers in the encoder of our E2E model with Conformer layers [4], which has shown good improvements for ASR. Secondly, we also explore running a 2nd-pass beam search to improve quality. In order to ensure the 2nd-pass completes quickly, we explore non-causal Conformer layers that feed into the same 1st-pass RNN-T decoder, an algorithm called Cascaded Encoders [5]. Overall, we find that the Conformer RNN-T with Cascaded Encoders offers a better quality and latency tradeoff for streaming ASR.
This paper presents our recent effort on end-to-end speaker-attributed automatic speech recognition, which jointly performs speaker counting, speech recognition and speaker identification for monaural multi-talker audio. Firstly, we thoroughly update the model architecture that was previously designed based on a long short-term memory (LSTM)-based attention encoder decoder by applying transformer architectures. Secondly, we propose a speaker deduplication mechanism to reduce speaker identification errors in highly overlapped regions. Experimental results on the LibriSpeechMix dataset shows that the transformer-based architecture is especially good at counting the speakers and that the proposed model reduces the speaker-attributed word error rate by 47% over the LSTM-based baseline. Furthermore, for the LibriCSS dataset, which consists of real recordings of overlapped speech, the proposed model achieves concatenated minimum-permutation word error rates of 11.9% and 16.3% with and without target speaker profiles, respectively, both of which are the state-of-the-art results for LibriCSS with the monaural setting.
This work explores better adaptation methods to low-resource languages using an external language model (LM) under the framework of transfer learning. We first build a language-independent ASR system in a unified sequence-to-sequence (S2S) architecture with a shared vocabulary among all languages. During adaptation, we perform LM fusion transfer, where an external LM is integrated into the decoder network of the attention-based S2S model in the whole adaptation stage, to effectively incorporate linguistic context of the target language. We also investigate various seed models for transfer learning. Experimental evaluations using the IARPA BABEL data set show that LM fusion transfer improves performances on all target five languages compared with simple transfer learning when the external text data is available. Our final system drastically reduces the performance gap from the hybrid systems.