Do you want to publish a course? Click here

Competitive Allocation of a Mixed Manna

59   0   0.0 ( 0 )
 Added by Jugal Garg
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study the fair division problem of allocating a mixed manna under additively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and bads that everyone dislikes, as well as items that some like and others dislike. The seminal work of Bogomolnaia et al. [Econometrica17] argue why allocating a mixed manna is genuinely more complicated than a good or a bad manna, and why competitive equilibrium is the best mechanism. They also provide the existence of equilibrium and establish its peculiar properties (e.g., non-convex and disconnected set of equilibria even under linear utilities), but leave the problem of computing an equilibrium open. This problem remained unresolved even for only bad manna under linear utilities. Our main result is a simplex-like algorithm based on Lemkes scheme for computing a competitive allocation of a mixed manna under SPLC utilities, a strict generalization of linear. Experimental results on randomly generated instances suggest that our algorithm will be fast in practice. The problem is known to be PPAD-hard for the case of good manna, and we also show a similar result for the case of bad manna. Given these PPAD-hardness results, designing such an algorithm is the only non-brute-force (non-enumerative) option known, e.g., the classic Lemke-Howson algorithm (1964) for computing a Nash equilibrium in a 2-player game is still one of the most widely used algorithms in practice. Our algorithm also yields several new structural properties as simple corollaries. We obtain a (constructive) proof of existence for a far more general setting, membership of the problem in PPAD, rational-valued solution, and odd number of solutions property. The last property also settles the conjecture of Bogomolnaia et al. in the affirmative.



rate research

Read More

We consider a fair division model in which agents have positive, zero and negative utilities for items. For this model, we analyse one existing fairness property - EFX - and three new and related properties - EFX$_0$, EFX$^3$ and EF1$^3$ - in combination with Pareto-optimality. With general utilities, we give a modified version of an existing algorithm for computing an EF1$^3$ allocation. With $-alpha/0/alpha$ utilities, this algorithm returns an EFX$^3$ and PO allocation. With absolute identical utilities, we give a new algorithm for an EFX and PO allocation. With $-alpha/0/beta$ utilities, this algorithm also returns such an allocation. We report some new impossibility results as well.
71 - Martin Aleksandrov 2020
We consider a fair division setting where indivisible items are allocated to agents. Each agent in the setting has strictly negative, zero or strictly positive utility for each item. We, thus, make a distinction between items that are good for some agents and bad for other agents (i.e. mixed), good for everyone (i.e. goods) or bad for everyone (i.e. bads). For this model, we study axiomatic concepts of allocations such as jealousy-freeness up to one item, envy-freeness up to one item and Pareto-optimality. We obtain many new possibility and impossibility results in regard to combinations of these properties. We also investigate new computational tasks related to such combinations. Thus, we advance the state-of-the-art in fair division of mixed manna.
We consider a multi-agent model for fair division of mixed manna (i.e. items for which agents can have positive, zero or negative utilities), in which agents have additive utilities for bundles of items. For this model, we give several general impossibility results and special possibility results for three common fairness concepts (i.e. EF1, EFX, EFX3) and one popular efficiency concept (i.e. PO). We also study how these interact with common welfare objectives such as the Nash, disutility Nash and egalitarian welfares. For example, we show that maximizing the Nash welfare with mixed manna (or minimizing the disutility Nash welfare) does not ensure an EF1 allocation whereas with goods and the Nash welfare it does. We also prove that an EFX3 allocation may not exist even with identical utilities. By comparison, with tertiary utilities, EFX and PO allocations, or EFX3 and PO allocations always exist. Also, with identical utilities, EFX and PO allocations always exist. For these cases, we give polynomial-time algorithms, returning such allocations and approximating further the Nash, disutility Nash and egalitarian welfares in special cases.
Dynamic pricing is used to maximize the revenue of a firm over a finite-period planning horizon, given that the firm may not know the underlying demand curve a priori. In emerging markets, in particular, firms constantly adjust pricing strategies to collect adequate demand information, which is a process known as price experimentation. To date, few papers have investigated the pricing decision process in a competitive environment with unknown demand curves, conditions that make analysis more complex. Asynchronous price updating can render the demand information gathered by price experimentation less informative or inaccurate, as it is nearly impossible for firms to remain informed about the latest prices set by competitors. Hence, firms may set prices using available, yet out-of-date, price information of competitors. In this paper, we design an algorithm to facilitate synchronized dynamic pricing, in which competitive firms estimate their demand functions based on observations and adjust their pricing strategies in a prescribed manner. The process is called learning and earning elsewhere in the literature. The goal is for the pricing decisions, determined by estimated demand functions, to converge to underlying equilibrium decisions. The main question that we answer is whether such a mechanism of periodically synchronized price updates is optimal for all firms. Furthermore, we ask whether prices converge to a stable state and how much regret firms incur by employing such a data-driven pricing algorithm.
We study secretary problems in settings with multiple agents. In the standard secretary problem, a sequence of arbitrary awards arrive online, in a random order, and a single decision maker makes an immediate and irrevocable decision whether to accept each award upon its arrival. The requirement to make immediate decisions arises in many cases due to an implicit assumption regarding competition. Namely, if the decision maker does not take the offered award immediately, it will be taken by someone else. The novelty in this paper is in introducing a multi-agent model in which the competition is endogenous. In our model, multiple agents compete over the arriving awards, but the decisions need not be immediate; instead, agents may select previous awards as long as they are available (i.e., not taken by another agent). If an award is selected by multiple agents, ties are broken either randomly or according to a global ranking. This induces a multi-agent game in which the time of selection is not enforced by the rules of the games, rather it is an important component of the agents strategy. We study the structure and performance of equilibria in this game. For random tie breaking, we characterize the equilibria of the game, and show that the expected social welfare in equilibrium is nearly optimal, despite competition among the agents. For ranked tie breaking, we give a full characterization of equilibria in the 3-agent game, and show that as the number of agents grows, the winning probability of every agent under non-immediate selections approaches her winning probability under immediate selections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا