Do you want to publish a course? Click here

On parity decision trees for Fourier-sparse Boolean functions

85   0   0.0 ( 0 )
 Added by Nikhil Mande
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study parity decision trees for Boolean functions. The motivation of our study is the log-rank conjecture for XOR functions and its connection to Fourier analysis and parity decision tree complexity. Let f be a Boolean function with Fourier support S and Fourier sparsity k. 1) We prove via the probabilistic method that there exists a parity decision tree of depth O(sqrt k) that computes f. This matches the best known upper bound on the parity decision tree complexity of Boolean functions (Tsang, Wong, Xie, and Zhang, FOCS 2013). Moreover, while previous constructions (Tsang et al., FOCS 2013, Shpilka, Tal, and Volk, Comput. Complex. 2017) build the trees by carefully choosing the parities to be queried in each step, our proof shows that a naive sampling of the parities suffices. 2) We generalize the above result by showing that if the Fourier spectra of Boolean functions satisfy a natural folding property, then the above proof can be adapted to establish existence of a tree of complexity polynomially smaller than O(sqrt k). We make a conjecture in this regard which, if true, implies that the communication complexity of an XOR function is bounded above by the fourth root of the rank of its communication matrix, improving upon the previously known upper bound of square root of rank (Tsang et al., FOCS 2013, Lovett, J. ACM. 2016). 3) It can be shown by elementary techniques that for any Boolean function f and all pairs (alpha, beta) of parities in S, there exists another pair (gamma, delta) of parities in S such that alpha + beta = gamma + delta. We show, among other results, that there must exist several gamma in F_2^n such that there are at least three pairs (alpha_1, alpha_2) of parities in S with alpha_1 + alpha_2 = gamma.



rate research

Read More

We prove that for every parity decision tree of depth $d$ on $n$ variables, the sum of absolute values of Fourier coefficients at level $ell$ is at most $d^{ell/2} cdot O(ell cdot log(n))^ell$. Our result is nearly tight for small values of $ell$ and extends a previous Fourier bound for standard decision trees by Sherstov, Storozhenko, and Wu (STOC, 2021). As an application of our Fourier bounds, using the results of Bansal and Sinha (STOC, 2021), we show that the $k$-fold Forrelation problem has (randomized) parity decision tree complexity $tilde{Omega}left(n^{1-1/k}right)$, while having quantum query complexity $lceil k/2rceil$. Our proof follows a random-walk approach, analyzing the contribution of a random path in the decision tree to the level-$ell$ Fourier expression. To carry the argument, we apply a careful cleanup procedure to the parity decision tree, ensuring that the value of the random walk is bounded with high probability. We observe that step sizes for the level-$ell$ walks can be computed by the intermediate values of level $le ell-1$ walks, which calls for an inductive argument. Our approach differs from previous proofs of Tal (FOCS, 2020) and Sherstov, Storozhenko, and Wu (STOC, 2021) that relied on decompositions of the tree. In particular, for the special case of standard decision trees we view our proof as slightly simpler and more intuitive. In addition, we prove a similar bound for noisy decision trees of cost at most $d$ -- a model that was recently introduced by Ben-David and Blais (FOCS, 2020).
We initiate the study of Boolean function analysis on high-dimensional expanders. We give a random-walk based definition of high dimensional expansion, which coincides with the earlier definition in terms of two-sided link expanders. Using this definition, we describe an analogue of the Fourier expansion and the Fourier levels of the Boolean hypercube for simplicial complexes. Our analogue is a decomposition into approximate eigenspaces of random walks associated with the simplicial complexes. We then use this decomposition to extend the Friedgut-Kalai-Naor theorem to high-dimensional expanders. Our results demonstrate that a high-dimensional expander can sometimes serve as a sparse model for the Boolean slice or hypercube, and quite possibly additional results from Boolean function analysis can be carried over to this sparse model. Therefore, this model can be viewed as a derandomization of the Boolean slice, containing only $|X(k-1)|=O(n)$ points in contrast to $binom{n}{k}$ points in the $(k)$-slice (which consists of all $n$-bit strings with exactly $k$ ones). Our random-walk definition and the decomposition has the additional advantage that they extend to the more general setting of posets, which include both high-dimensional expanders and the Grassmann poset, which appears in recent works on the unique games conjecture.
We consider the problem of studying the simulation capabilities of the dynamics of arbitrary networks of finite states machines. In these models, each node of the network takes two states 0 (passive) and 1 (active). The states of the nodes are updated in parallel following a local totalistic rule, i.e., depending only on the sum of active states. Four families of totalistic rules are considered: linear or matrix defined rules (a node takes state 1 if each of its neighbours is in state 1), threshold rules (a node takes state 1 if the sum of its neighbours exceed a threshold), isolated rules (a node takes state 1 if the sum of its neighbours equals to some single number) and interval rule (a node takes state 1 if the sum of its neighbours belong to some discrete interval). We focus in studying the simulation capabilities of the dynamics of each of the latter classes. In particular, we show that totalistic automata networks governed by matrix defined rules can only implement constant functions and other matrix defined functions. In addition, we show that t by threshold rules can generate any monotone Boolean functions. Finally, we show that networks driven by isolated and the interval rules exhibit a very rich spectrum of boolean functions as they can, in fact, implement any arbitrary Boolean functions. We complement this results by studying experimentally the set of different Boolean functions generated by totalistic rules on random graphs.
Changs lemma (Duke Mathematical Journal, 2002) is a classical result with applications across several areas in mathematics and computer science. For a Boolean function $f$ that takes values in {-1,1} let $r(f)$ denote its Fourier rank. For each positive threshold $t$, Changs lemma provides a lower bound on $wt(f):=Pr[f(x)=-1]$ in terms of the dimension of the span of its characters with Fourier coefficients of magnitude at least $1/t$. We examine the tightness of Changs lemma w.r.t. the following three natural settings of the threshold: - the Fourier sparsity of $f$, denoted $k(f)$, - the Fourier max-supp-entropy of $f$, denoted $k(f)$, defined to be $max {1/|hat{f}(S)| : hat{f}(S) eq 0}$, - the Fourier max-rank-entropy of $f$, denoted $k(f)$, defined to be the minimum $t$ such that characters whose Fourier coefficients are at least $1/t$ in absolute value span a space of dimension $r(f)$. We prove new lower bounds on $wt(f)$ in terms of these measures. One of our lower bounds subsumes and refines the previously best known upper bound on $r(f)$ in terms of $k(f)$ by Sanyal (ToC, 2019). Another lower bound is based on our improvement of a bound by Chattopadhyay, Hatami, Lovett and Tal (ITCS, 2019) on the sum of the absolute values of the level-$1$ Fourier coefficients. We also show that Changs lemma for the these choices of the threshold is asymptotically outperformed by our bounds for most settings of the parameters involved. Next, we show that our bounds are tight for a wide range of the parameters involved, by constructing functions (which are modifications of the Addressing function) witnessing their tightness. Finally we construct Boolean functions $f$ for which - our lower bounds asymptotically match $wt(f)$, and - for any choice of the threshold $t$, the lower bound obtained from Changs lemma is asymptotically smaller than $wt(f)$.
153 - Penghui Yao 2015
In this note, we study the relation between the parity decision tree complexity of a boolean function $f$, denoted by $mathrm{D}_{oplus}(f)$, and the $k$-party number-in-hand multiparty communication complexity of the XOR functions $F(x_1,ldots, x_k)= f(x_1opluscdotsoplus x_k)$, denoted by $mathrm{CC}^{(k)}(F)$. It is known that $mathrm{CC}^{(k)}(F)leq kcdotmathrm{D}_{oplus}(f)$ because the players can simulate the parity decision tree that computes $f$. In this note, we show that [mathrm{D}_{oplus}(f)leq Obig(mathrm{CC}^{(4)}(F)^5big).] Our main tool is a recent result from additive combinatorics due to Sanders. As $mathrm{CC}^{(k)}(F)$ is non-decreasing as $k$ grows, the parity decision tree complexity of $f$ and the communication complexity of the corresponding $k$-argument XOR functions are polynomially equivalent whenever $kgeq 4$. Remark: After the first version of this paper was finished, we discovered that Hatami and Lovett had already discovered the same result a few years ago, without writing it up.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا