Do you want to publish a course? Click here

Tight Changs-lemma-type bounds for Boolean functions

154   0   0.0 ( 0 )
 Added by Manaswi Paraashar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Changs lemma (Duke Mathematical Journal, 2002) is a classical result with applications across several areas in mathematics and computer science. For a Boolean function $f$ that takes values in {-1,1} let $r(f)$ denote its Fourier rank. For each positive threshold $t$, Changs lemma provides a lower bound on $wt(f):=Pr[f(x)=-1]$ in terms of the dimension of the span of its characters with Fourier coefficients of magnitude at least $1/t$. We examine the tightness of Changs lemma w.r.t. the following three natural settings of the threshold: - the Fourier sparsity of $f$, denoted $k(f)$, - the Fourier max-supp-entropy of $f$, denoted $k(f)$, defined to be $max {1/|hat{f}(S)| : hat{f}(S) eq 0}$, - the Fourier max-rank-entropy of $f$, denoted $k(f)$, defined to be the minimum $t$ such that characters whose Fourier coefficients are at least $1/t$ in absolute value span a space of dimension $r(f)$. We prove new lower bounds on $wt(f)$ in terms of these measures. One of our lower bounds subsumes and refines the previously best known upper bound on $r(f)$ in terms of $k(f)$ by Sanyal (ToC, 2019). Another lower bound is based on our improvement of a bound by Chattopadhyay, Hatami, Lovett and Tal (ITCS, 2019) on the sum of the absolute values of the level-$1$ Fourier coefficients. We also show that Changs lemma for the these choices of the threshold is asymptotically outperformed by our bounds for most settings of the parameters involved. Next, we show that our bounds are tight for a wide range of the parameters involved, by constructing functions (which are modifications of the Addressing function) witnessing their tightness. Finally we construct Boolean functions $f$ for which - our lower bounds asymptotically match $wt(f)$, and - for any choice of the threshold $t$, the lower bound obtained from Changs lemma is asymptotically smaller than $wt(f)$.



rate research

Read More

Given a hypergraph $H$ and a weight function $w: V rightarrow {1, dots, M}$ on its vertices, we say that $w$ is isolating if there is exactly one edge of minimum weight $w(e) = sum_{i in e} w(i)$. The Isolation Lemma is a combinatorial principle introduced in Mulmuley et. al (1987) which gives a lower bound on the number of isolating weight functions. Mulmuley used this as the basis of a parallel algorithm for finding perfect graph matchings. It has a number of other applications to parallel algorithms and to reductions of general search problems to unique search problems (in which there are one or zero solutions). The original bound given by Mulmuley et al. was recently improved by Ta-Shma (2015). In this paper, we show improved lower bounds on the number of isolating weight functions, and we conjecture that the extremal case is when $H$ consists of $n$ singleton edges. When $M gg n$ our improved bound matches this extremal case asymptotically. We are able to show that this conjecture holds in a number of special cases: when $H$ is a linear hypergraph or is 1-degenerate, or when $M = 2$. We also show that it holds asymptotically when $M gg n gg 1$.
123 - Peter Hoyer 2005
The quantum adversary method is a versatile method for proving lower bounds on quantum algorithms. It yields tight bounds for many computational problems, is robust in having many equivalent formulations, and has natural connections to classical lower bounds. A further nice property of the adversary method is that it behaves very well with respect to composition of functions. We generalize the adversary method to include costs--each bit of the input can be given an arbitrary positive cost representing the difficulty of querying that bit. We use this generalization to exactly capture the adversary bound of a composite function in terms of the adversary bounds of its component functions. Our results generalize and unify previously known composition properties of adversary methods, and yield as a simple corollary the Omega(sqrt{n}) bound of Barnum and Saks on the quantum query complexity of read-once functions.
We initiate the study of Boolean function analysis on high-dimensional expanders. We give a random-walk based definition of high dimensional expansion, which coincides with the earlier definition in terms of two-sided link expanders. Using this definition, we describe an analogue of the Fourier expansion and the Fourier levels of the Boolean hypercube for simplicial complexes. Our analogue is a decomposition into approximate eigenspaces of random walks associated with the simplicial complexes. We then use this decomposition to extend the Friedgut-Kalai-Naor theorem to high-dimensional expanders. Our results demonstrate that a high-dimensional expander can sometimes serve as a sparse model for the Boolean slice or hypercube, and quite possibly additional results from Boolean function analysis can be carried over to this sparse model. Therefore, this model can be viewed as a derandomization of the Boolean slice, containing only $|X(k-1)|=O(n)$ points in contrast to $binom{n}{k}$ points in the $(k)$-slice (which consists of all $n$-bit strings with exactly $k$ ones). Our random-walk definition and the decomposition has the additional advantage that they extend to the more general setting of posets, which include both high-dimensional expanders and the Grassmann poset, which appears in recent works on the unique games conjecture.
We study parity decision trees for Boolean functions. The motivation of our study is the log-rank conjecture for XOR functions and its connection to Fourier analysis and parity decision tree complexity. Let f be a Boolean function with Fourier support S and Fourier sparsity k. 1) We prove via the probabilistic method that there exists a parity decision tree of depth O(sqrt k) that computes f. This matches the best known upper bound on the parity decision tree complexity of Boolean functions (Tsang, Wong, Xie, and Zhang, FOCS 2013). Moreover, while previous constructions (Tsang et al., FOCS 2013, Shpilka, Tal, and Volk, Comput. Complex. 2017) build the trees by carefully choosing the parities to be queried in each step, our proof shows that a naive sampling of the parities suffices. 2) We generalize the above result by showing that if the Fourier spectra of Boolean functions satisfy a natural folding property, then the above proof can be adapted to establish existence of a tree of complexity polynomially smaller than O(sqrt k). We make a conjecture in this regard which, if true, implies that the communication complexity of an XOR function is bounded above by the fourth root of the rank of its communication matrix, improving upon the previously known upper bound of square root of rank (Tsang et al., FOCS 2013, Lovett, J. ACM. 2016). 3) It can be shown by elementary techniques that for any Boolean function f and all pairs (alpha, beta) of parities in S, there exists another pair (gamma, delta) of parities in S such that alpha + beta = gamma + delta. We show, among other results, that there must exist several gamma in F_2^n such that there are at least three pairs (alpha_1, alpha_2) of parities in S with alpha_1 + alpha_2 = gamma.
In $(k,r)$-Center we are given a (possibly edge-weighted) graph and are asked to select at most $k$ vertices (centers), so that all other vertices are at distance at most $r$ from a center. In this paper we provide a number of tight fine-grained bounds on the complexity of this problem with respect to various standard graph parameters. Specifically: - For any $rge 1$, we show an algorithm that solves the problem in $O^*((3r+1)^{textrm{cw}})$ time, where $textrm{cw}$ is the clique-width of the input graph, as well as a tight SETH lower bound matching this algorithms performance. As a corollary, for $r=1$, this closes the gap that previously existed on the complexity of Dominating Set parameterized by $textrm{cw}$. - We strengthen previously known FPT lower bounds, by showing that $(k,r)$-Center is W[1]-hard parameterized by the input graphs vertex cover (if edge weights are allowed), or feedback vertex set, even if $k$ is an additional parameter. Our reductions imply tight ETH-based lower bounds. Finally, we devise an algorithm parameterized by vertex cover for unweighted graphs. - We show that the complexity of the problem parameterized by tree-depth is $2^{Theta(textrm{td}^2)}$ by showing an algorithm of this complexity and a tight ETH-based lower bound. We complement these mostly negative results by providing FPT approximation schemes parameterized by clique-width or treewidth which work efficiently independently of the values of $k,r$. In particular, we give algorithms which, for any $epsilon>0$, run in time $O^*((textrm{tw}/epsilon)^{O(textrm{tw})})$, $O^*((textrm{cw}/epsilon)^{O(textrm{cw})})$ and return a $(k,(1+epsilon)r)$-center, if a $(k,r)$-center exists, thus circumventing the problems W-hardness.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا