No Arabic abstract
In this note, we study the relation between the parity decision tree complexity of a boolean function $f$, denoted by $mathrm{D}_{oplus}(f)$, and the $k$-party number-in-hand multiparty communication complexity of the XOR functions $F(x_1,ldots, x_k)= f(x_1opluscdotsoplus x_k)$, denoted by $mathrm{CC}^{(k)}(F)$. It is known that $mathrm{CC}^{(k)}(F)leq kcdotmathrm{D}_{oplus}(f)$ because the players can simulate the parity decision tree that computes $f$. In this note, we show that [mathrm{D}_{oplus}(f)leq Obig(mathrm{CC}^{(4)}(F)^5big).] Our main tool is a recent result from additive combinatorics due to Sanders. As $mathrm{CC}^{(k)}(F)$ is non-decreasing as $k$ grows, the parity decision tree complexity of $f$ and the communication complexity of the corresponding $k$-argument XOR functions are polynomially equivalent whenever $kgeq 4$. Remark: After the first version of this paper was finished, we discovered that Hatami and Lovett had already discovered the same result a few years ago, without writing it up.
We show a new duality between the polynomial margin complexity of $f$ and the discrepancy of the function $f circ textsf{XOR}$, called an $textsf{XOR}$ function. Using this duality, we develop polynomial based techniques for understanding the bounded error ($textsf{BPP}$) and the weakly-unbounded error ($textsf{PP}$) communication complexities of $textsf{XOR}$ functions. We show the following. A weak form of an interesting conjecture of Zhang and Shi (Quantum Information and Computation, 2009) (The full conjecture has just been reported to be independently settled by Hatami and Qian (Arxiv, 2017). However, their techniques are quite different and are not known to yield many of the results we obtain here). Zhang and Shi assert that for symmetric functions $f : {0, 1}^n rightarrow {-1, 1}$, the weakly unbounded-error complexity of $f circ textsf{XOR}$ is essentially characterized by the number of points $i$ in the set ${0,1, dots,n-2}$ for which $D_f(i) eq D_f(i+2)$, where $D_f$ is the predicate corresponding to $f$. The number of such points is called the odd-even degree of $f$. We show that the $textsf{PP}$ complexity of $f circ textsf{XOR}$ is $Omega(k/ log(n/k))$. We resolve a conjecture of a different Zhang characterizing the Threshold of Parity circuit size of symmetric functions in terms of their odd-even degree. We obtain a new proof of the exponential separation between $textsf{PP}^{cc}$ and $textsf{UPP}^{cc}$ via an $textsf{XOR}$ function. We provide a characterization of the approximate spectral norm of symmetric functions, affirming a conjecture of Ada et al. (APPROX-RANDOM, 2012) which has several consequences. Additionally, we prove strong $textsf{UPP}$ lower bounds for $f circ textsf{XOR}$, when $f$ is symmetric and periodic with period $O(n^{1/2-epsilon})$, for any constant $epsilon > 0$.
We prove a new lower bound on the parity decision tree complexity $mathsf{D}_{oplus}(f)$ of a Boolean function $f$. Namely, granularity of the Boolean function $f$ is the smallest $k$ such that all Fourier coefficients of $f$ are integer multiples of $1/2^k$. We show that $mathsf{D}_{oplus}(f)geq k+1$. This lower bound is an improvement of lower bounds through the sparsity of $f$ and through the degree of $f$ over $mathbb{F}_2$. Using our lower bound we determine the exact parity decision tree complexity of several important Boolean functions including majority and recursive majority. For majority the complexity is $n - mathsf{B}(n)+1$, where $mathsf{B}(n)$ is the number of ones in the binary representation of $n$. For recursive majority the complexity is $frac{n+1}{2}$. Finally, we provide an example of a function for which our lower bound is not tight. Our results imply new lower bound of $n - mathsf{B}(n)$ on the multiplicative complexity of majority.
The discrepancy method is widely used to find lower bounds for communication complexity of XOR games. It is well known that these bounds can be far from optimal. In this context Disjointness is usually mentioned as a case where the method fails to give good bounds, because the increment of the value of the game is linear (rather than exponential) in the number of communicated bits. We show in this paper the existence of XOR games where the discrepancy method yields bounds as poor as one desires. Indeed, we show the existence of such games with any previously prescribed value. To prove this result we apply the theory of p-summing operators, a central topic in Banach space theory. We show in the paper other applications of this theory to the study of the communication complexity of XOR games.
We study the relationship between various one-way communication complexity measures of a composed function with the analogous decision tree complexity of the outer function. We consider two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs. Let $IP$ denote Inner Product on $2b$ bits. 1) If $f$ is a total Boolean function that depends on all of its inputs, the bounded-error one-way quantum communication complexity of $f circ IP$ equals $Omega(n(b-1))$. 2) If $f$ is a partial Boolean function, the deterministic one-way communication complexity of $f circ IP$ is at least $Omega(b cdot D_{dt}^{rightarrow}(f))$, where $D_{dt}^{rightarrow}(f)$ denotes the non-adaptive decision tree complexity of $f$. For our quantum lower bound, we show a lower bound on the VC-dimension of $f circ IP$, and then appeal to a result of Klauck [STOC00]. Our deterministic lower bound relies on a combinatorial result due to Frankl and Tokushige [Comb.99]. It is known due to a result of Montanaro and Osborne [arXiv09] that the deterministic one-way communication complexity of $f circ XOR_2$ equals the non-adaptive parity decision tree complexity of $f$. In contrast, we show the following with the gadget $AND_2$. 1) There exists a function for which even the randomized non-adaptive AND decision tree complexity of $f$ is exponentially large in the deterministic one-way communication complexity of $f circ AND_2$. 2) For symmetric functions $f$, the non-adaptive AND decision tree complexity of $f$ is at most quadratic in the (even two-way) communication complexity of $f circ AND_2$. In view of the first point, a lower bound on non-adaptive AND decision tree complexity of $f$ does not lift to a lower bound on one-way communication complexity of $f circ AND_2$. The proof of the first point above uses the well-studied Odd-Max-Bit function.
We define nondeterministic communication complexity in the model of communication complexity with help of Babai, Hayes and Kimmel. We use it to prove logarithmic lower bounds on the NOF communication complexity of explicit graph functions, which are complementary to the bounds proved by Beame, David, Pitassi and Woelfel.