No Arabic abstract
Electrons on the lattice subject to a strong magnetic field exhibit the fractal spectrum of electrons, which is known as the Hofstadter butterfly. In this work, we investigate unconventional superconductivity in a three-dimensional Hofstadter butterfly system. While it is generally difficult to achieve the Hofstadter regime, we show that the quasi-two-dimensional materials with a tilted magnetic field produce the large-scale superlattices, which generate the Hofstadter butterfly even at the moderate magnetic field strength. We first show that the van-Hove singularities of the butterfly flat bands greatly elevate the superconducting critical temperature, offering a new mechanism of field-enhanced superconductivity. Furthermore, we demonstrate that the quantum geometry of the Landau mini-bands plays a crucial role in the description of the superconductivity, which is shown to be clearly distinct from the conventional superconductors. Finally, we discuss the relevance of our results to the recently discovered re-entrant superconductivity of UTe2 in strong magnetic fields.
The modulated density of states observed in recent STM experiments in underdoped cuprates is argued to be a manifestation of the charge density wave of Cooper pairs (CPCDW). CPCDW formation is due to superconducting phase fluctuations enhanced by Mott-Hubbard correlations near half-filling. The physics behind the CPCDW is related to a Hofstadter problem in a dual superconductor. It is shown that CPCDW does not impact nodal fermions at the leading order. An experiment is proposed to probe coupling of the CPCDW to the spin carried by nodal quasiparticles.
We introduce the magnonic Floquet Hofstadter butterfly in the two-dimensional insulating honeycomb ferromagnet. We show that when the insulating honeycomb ferromagnet is irradiated by an oscillating space- and time-dependent electric field, the hopping magnetic dipole moment (i.e. magnon quasiparticles) accumulate the Aharonov-Casher phase. In the case of only space-dependent electric field, we realize the magnonic Hofstadter spectrum with similar fractal structure as graphene subject to a perpendicular magnetic field, but with no spin degeneracy due to broken time-reversal symmetry by the ferromagnetic order. In addition, the magnonic Dirac points and Landau levels occur at finite energy as expected in a bosonic system. Remarkably, this discrepancy does not affect the topological invariant of the system. Consequently, the magnonic Chern number assumes odd values and the magnon Hall conductance gets quantized by odd integers. In the case of both space- and time-dependent electric field, the theoretical framework is studied by the Floquet formalism. We show that the magnonic Floquet Hofstadter spectrum emerges entirely from the oscillating space- and time-dependent electric field, which is in stark contrast to electronic Floquet Hofstadter spectrum, where irradiation by circularly polarized light and a perpendicular magnetic field are applied independently. We study the deformation of the fractal structure at different laser frequencies and amplitudes, and analyze the topological phase transitions associated with gap openings in the magnonic Floquet Hofstadter butterfly.
We study an energy spectrum of electron moving under the constant magnetic field in two dimensional noncommutative space. It take place with the gauge invariant way. The Hofstadter butterfly diagram of the noncommutative space is calculated in terms of the lattice model which is derived by the Bopps shift for space and by the Peierls substitution for external magnetic field. We also find the fractal structure in new diagram. Although the global features of the new diagram are similar to the diagram of the commutative space, the detail structure is different from it.
Recent experiments in the cuprates have seen evidence of a transient superconducting state upon optical excitation polarized along the c-axis [R. Mankowsky et al., Nature 516, 71 (2014)]. Motivated by these experiments we propose an extension of the single-layer $t-J-V$ model of cuprates to three dimensions in order to study the effects of inter-plane tunneling on the competition between superconductivity and bond density wave order. We find that an optical pump can suppress the charge order and simultaneously enhance superconductivity, due to the inherent competition between the two. We also provide an intuitive picture of the physical mechanism underlying this effect. Furthermore, based on a simple Floquet theory we estimate the magnitude of the enhancement.
We investigate theoretically the spectrum of a graphene-like sample (honeycomb lattice) subjected to a perpendicular magnetic field and irradiated by circularly polarized light. This system is studied using the Floquet formalism, and the resulting Hofstadter spectrum is analyzed for different regimes of the driving frequency. For lower frequencies, resonances of various copies of the spectrum lead to intricate formations of topological gaps. In the Landau-level regime, new wing-like gaps emerge upon reducing the driving frequency, thus revealing the possibility of dynamically tuning the formation of the Hofstadter butterfly. In this regime, an effective model may be analytically derived, which allows us to retrace the energy levels that exhibit avoided crossings and ultimately lead to gap structures with a wing-like shape. At high frequencies, we find that gaps open for various fluxes at $E=0$, and upon increasing the amplitude of the driving, gaps also close and reopen at other energies. The topological invariants of these gaps are calculated and the resulting spectrum is elucidated. We suggest opportunities for experimental realization and discuss similarities with Landau-level structures in non-driven systems.