No Arabic abstract
We investigate theoretically the spectrum of a graphene-like sample (honeycomb lattice) subjected to a perpendicular magnetic field and irradiated by circularly polarized light. This system is studied using the Floquet formalism, and the resulting Hofstadter spectrum is analyzed for different regimes of the driving frequency. For lower frequencies, resonances of various copies of the spectrum lead to intricate formations of topological gaps. In the Landau-level regime, new wing-like gaps emerge upon reducing the driving frequency, thus revealing the possibility of dynamically tuning the formation of the Hofstadter butterfly. In this regime, an effective model may be analytically derived, which allows us to retrace the energy levels that exhibit avoided crossings and ultimately lead to gap structures with a wing-like shape. At high frequencies, we find that gaps open for various fluxes at $E=0$, and upon increasing the amplitude of the driving, gaps also close and reopen at other energies. The topological invariants of these gaps are calculated and the resulting spectrum is elucidated. We suggest opportunities for experimental realization and discuss similarities with Landau-level structures in non-driven systems.
We introduce the magnonic Floquet Hofstadter butterfly in the two-dimensional insulating honeycomb ferromagnet. We show that when the insulating honeycomb ferromagnet is irradiated by an oscillating space- and time-dependent electric field, the hopping magnetic dipole moment (i.e. magnon quasiparticles) accumulate the Aharonov-Casher phase. In the case of only space-dependent electric field, we realize the magnonic Hofstadter spectrum with similar fractal structure as graphene subject to a perpendicular magnetic field, but with no spin degeneracy due to broken time-reversal symmetry by the ferromagnetic order. In addition, the magnonic Dirac points and Landau levels occur at finite energy as expected in a bosonic system. Remarkably, this discrepancy does not affect the topological invariant of the system. Consequently, the magnonic Chern number assumes odd values and the magnon Hall conductance gets quantized by odd integers. In the case of both space- and time-dependent electric field, the theoretical framework is studied by the Floquet formalism. We show that the magnonic Floquet Hofstadter spectrum emerges entirely from the oscillating space- and time-dependent electric field, which is in stark contrast to electronic Floquet Hofstadter spectrum, where irradiation by circularly polarized light and a perpendicular magnetic field are applied independently. We study the deformation of the fractal structure at different laser frequencies and amplitudes, and analyze the topological phase transitions associated with gap openings in the magnonic Floquet Hofstadter butterfly.
We theoretically study the Hofstadter butterfly of a triangular network model in minimally twisted bilayer graphene (mTBLG). The band structure manifests periodicity in energy, mimicking that of Floquet systems. The butterfly diagrams provide fingerprints of the model parameters and reveal the hidden band topology. In a strong magnetic field, we establish that mTBLG realizes low-energy Floquet topological insulators (FTIs) carrying zero Chern number, while hosting chiral edge states in bulk gaps. We identify the FTIs by analyzing the nontrivial spectral flow in the Hofstadter butterfly, and by explicitly computing the chiral edge states. Our theory paves the way for an effective practical realization of FTIs in equilibrium solid state systems.
In this work, we study the topological phases of the dimerized square lattice in the presence of an external magnetic field. The dimerization pattern in the lattices hopping amplitudes can induce a series of bulk energy gap openings in the Hofstadter spectrum at certain fractional fillings, giving rise to various topological phases. In particular, we show that at $frac{1}{2}$-filling the topological quadrupole insulator phase with a quadrupole moment quantized to $frac{e}{2}$ and associated corner-localized mid-gap states exists in certain parameter regime for all magnetic fluxes. At $frac{1}{4}$ filling, the system can host obstructed atomic limit phases or Chern insulator phases. For those configurations gapped at fillings below $frac{1}{4}$, the system is in Chern insulator phases of various non-vanishing Chern numbers. Across the phase diagram, both bulk-obstructed and boundary-obstructed topological phase transitions exist in this model.
We study the relation between the global topology of the Hofstadter butterfly of a multiband insulator and the topological invariants of the underlying Hamiltonian. The global topology of the butterfly, i.e., the displacement of the energy gaps as the magnetic field is varied by one flux quantum, is determined by the spectral flow of energy eigenstates crossing gaps as the field is tuned. We find that for each gap this spectral flow is equal to the topological invariant of the gap, i.e., the net number of edge modes traversing the gap. For periodically driven systems, our results apply to the spectrum of quasienergies. In this case, the spectral flow of the sum of all the quasienergies gives directly the Rudner invariant.
The energy spectrum of massless Dirac fermions in graphene under two dimensional periodic magnetic modulation having square lattice symmetry is calculated. We show that the translation symmetry of the problem is similar to that of the Hofstadter or TKNN problem and in the weak field limit the tight binding energy eigenvalue equation is indeed given by Harper Hofstadter hamiltonian. We show that due to its magnetic translational symmetry the Hall conductivity can be identified as a topological invariant and hence quantized. We thus extend the idea of Quantum Hall Effect to magnetically modulated two dimensional electron system. Finally we indicate possible experimental systems where this may be verified.