Do you want to publish a course? Click here

Sub-shot-noise transmission measurement using optically gated single photons

110   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Harnessing the unique properties of quantum mechanics offers the possibility to deliver new technologies that can fundamentally outperform their classical counterparts. These technologies only deliver advantages when components operate with performance beyond specific thresholds. For optical quantum metrology, the biggest challenge that impacts on performance thresholds is optical loss. Here we demonstrate how including an optical delay and an optical switch in a feed-forward configuration with a stable and efficient correlated photon pair source reduces the detector efficiency required to enable quantum enhanced sensing down to the detection level of single photons. When the switch is active, we observe a factor of improvement in precision of 1.27 for transmission measurement on a per input photon basis, compared to the performance of a laser emitting an ideal coherent state and measured with the same detection efficiency as our setup. When the switch is inoperative, we observe no quantum advantage.



rate research

Read More

A promising result from optical quantum metrology is the ability to achieve sub-shot-noise performance in transmission or absorption measurements. This is due to the significantly lower uncertainty in light intensity of quantum beams with respect to their classical counterparts. In this work, we simulate the outcome of an experiment that uses a multiplexed single-photon source based on pair generation by continuous spontaneous parametric down conversion (SPDC) followed by a time multiplexing set-up with a binary temporal division strategy, considering several types of experimental losses. With such source, the sub-Poissonian statistics of the output signal is the key for achieving sub-shot-noise performance. We compare the numerical results with two paradigmatic limits: the shot-noise limit (achieved using coherent sources) and the quantum limit (obtained with an ideal photon-number Fock state as the input source). We also investigate conditions in which threshold detectors can be used, and the effect of input light fluctuations on the measurement error. Results show that sub-shot-noise performance can be achieved, even without using number-resolving detectors, with improvement factors that range from 1.5 to 2. This technique would allow measurements of optical absorption of a sample with reasonable uncertainty using ultra-low light intensity and minimum disruption of biological or other fragile specimens.
Heralded single photon sources are often implemented using spontaneous parametric downconversion, but their quality can be restricted by optical loss, double pair emission and detector dark counts. Here, we show that the performance of such sources can be improved using cascaded downconversion, by providing a second trigger signal to herald the presence of a single photon, thereby reducing the effects of detector dark counts. We find that for a setup with fixed detectors, an improved heralded second-order correlation function $g^{(2)}$ can always be achieved with cascaded downconversion given sufficient efficiency for the second downconversion, even for equal single-photon production rates. Furthermore, the minimal $g^{(2)}$ value is unchanged for a large range in pump beam intensity. These results are interesting for applications where achieving low, stable values of $g^{(2)}$ is of primary importance.
130 - Yang Gao , Hwang Lee 2008
Phase measurement using a lossless Mach-Zehnder interferometer with certain entangled $N$-photon states can lead to a phase sensitivity of the order of 1/N, the Heisenberg limit. However, previously considered output measurement schemes are different for different input states to achieve this limit. We show that it is possible to achieve this limit just by the parity measurement for all the commonly proposed entangled states. Based on the parity measurement scheme, the reductions of the phase sensitivity in the presence of photon loss are examined for the various input states.
We experimentally implement a machine-learning method for accurately identifying unknown pure quantum states. The method, called single-shot measurement learning, achieves the theoretical optimal accuracy for $epsilon = O(N^{-1})$ in state learning and reproduction, where $epsilon$ and $N$ denote the infidelity and number of state copies, without employing computationally demanding tomographic methods. This merit results from the inclusion of weighted randomness in the learning rule governing the exploration of diverse learning routes. We experimentally verify the advantages of our scheme by using a linear-optics setup to prepare and measure single-photon polarization qubits. The experimental results show highly accurate state learning and reproduction exhibiting infidelity of $O(N^{-0.983})$ down to $10^{-5}$, without estimation of the experimental parameters.
The high-frequency transconductance and current noise of top-gated single carbon nanotube transistors have been measured and used to investigate hot electron effects in one-dimensional transistors. Results are in good agreement with a theory of 1-dimensional nano-transistor. In particular the prediction of a large transconductance correction to the Johnson-Nyquist thermal noise formula is confirmed experimentally. Experiment shows that nanotube transistors can be used as fast charge detectors for quantum coherent electronics with a resolution of $13mathrm{mu e/sqrt{Hz}}$ in the 0.2-$0.8 mathrm{GHz}$ band.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا